ASE: Writing a forth interpreter from scratch

Pablo de Oliveira <pablo.oliveira@uvsq.fr>

January 18, 2013

mailto:pablo.oliveira@uvsq.fr

Section 1

Introduction

Why an embedded Forth interpreter 7

» Forth is minimal: writing a Forth interpreter for a new architecture is
simple and fast.

> A full Forth system can be written in less than 2000 lines of codes.

» Forth is powerful for testing embedded systems:

> Comes with a REPL (Read-Eval Print Loop), we can test the target
interactively.
> It is very easy to define new words to control the target.

LEFT-MOTOR 50 SPEED
2 LED ON

: TURN-RIGHT (--)
RIGHT-MOTOR O SPEED
LEFT-MOTOR 50 SPEED
2 WAIT
LEFT-MOTOR O SPEED

Lecture Goal : Building a forth interpreter from scratch !

» Know how to build Forth from scratch starting from assembly.

> We study Richard W.M. Jones's Forth minimal implementation. Most of
the code samples in this lecture are borrowed from Jones's Forth.
http://git.annexia.org/?p=jonesforth.git

> Target: x86 architecture, you will port it to ARM !

http://git.annexia.org/?p=jonesforth.git

Section 2

The execution model

Execution Model

> In a forth system there are two kind of words definitions:
> Native words: these words are written in assembly (or other low level

language).
Forth words: these words are written in forth by calling other native or forth

words.

» Our execution model needs to be able to execute both kind of words.

Call Threaded Code

: SQUARE DUP * ;

SQUARE: (a forth word)
call DUP
call MUL
ret

DUP: (a native word)
mov (%esp), %eax
push Yeax
ret

MUL: (a native word)
pop %eax
pop %ebx
imull %ebx, %eax
push %eax
ret

» Simple but overhead of call and ret instructions.

Direct Threaded Code

> Instead of the calls, we store the adresses of the words:

: SQUARE DUP * ;

SQUARE:
&DUP
&MUL <-- Y%esi points to the next word to execute
&EXIT

> A definition is a list of adresses and not executable. We introduce a new
assembly macro NEXT. NEXT is called at the end of each word execution.
It jumps to the next word (pointed by %esi) and increments %esi.

NEXT:
lodsl // loads (%esi) into eax and increments %esi
jmp *%eax

Direct Threaded Code

SQUARE:
&DUP
&MUL
&EXIT

DUP:
mov (%esp), %eax
push Jeax

NEXT
MUL:
pop %eax
pop %ebx
imull %ebx, %eax
push Yeax
NEXT

Something is missing:

» How do we start executing SQUARE 7
» How do we call SQUARE from another word ?

Direct Threaded Code

SQUARE:
CALL DOCOL<-.
&DUP |
&MUL | EXIT:
&EXIT | NEXT: mov (%ebp), %esi
POW4: | lodsl add $4, ’%ebp // Restore old IP
CALL DOCOL | jmp *jeax NEXT
&SQUARE ----?
&SQUARE
&EXIT

DOCOL:
sub $4, Y%ebp
mov %esi, (Y%ebp) // Save the old IP on the stack
add $4, Jeax // ‘heax points to the adress of SQUARE DOCOL
// We increment it to point to &DUP
mov %eax, hesi
NEXT

Indirect Threaded Code

» Direct Threaded Code

> Overhead of one call at the start of each Forth word.
> Cache usage is non-optimal because we mix data and code.
> Still very fast and simple.

» Indirect Threaded Code
> We add one level of indirection:

We replace:

SQUARE: SQUARE:
CALL DOCOL &D0OCOL
&DUP with &DUP
&MUL &MUL
&EXIT &EXIT

» Reduces a bit the code size at the cost of an indirection.

» Does not mix code and data.

Execution Model Conclusion

> The execution model specifies how forth words are executed.

» Jones's Forth uses Indirect Threaded Code as most forths.

» ITC works exactly as DTC but with an extra level of indirection:
NEXT (DTC)

lodsl // loads J%esi into eax and increments %esi
jmp *%eax

NEXT (ITC)
lodsl // loads %esi into eax and increments %esi
jmp *(Yeax)

Section 3

Literals

Literals

How to add data inside a forth word ?

: DOUBLE (n -- n) 2 * ;
is compiled to

DOUBLE:
&D0OCOL
2 <- This is not an adress. NEXT will fail.
&MUL
&EXIT

Idea: use special word LIT. LIT will push 2 in the stack and skip 2.

DOUBLE:
&DOCOL
&LIT
2
&MUL
&EXIT

Literals

DOUBLE:
&DOCOL
&LIT
2
&MUL
&EXIT

How is LIT implemented ?

LIT:
lodsl // read literal (pointed by %esi) into %eax
// and increment %esi
push %eax // push literal into the stack
NEXT

Section 4

Dictionary

The Dictionary

> In Forth words are kept into a Dictionary.

> It is a linked list:

NULL
| (4b) (1b) (4b aligned)
+o= | ————= + + + + + + e —————— -
| LINK |61 SI1 QlUIAIRIE]| O] (definition ...
B B A B s St e —————— -
- len padding
I
Bl e e e et e e R e
| LINK l41PlO0OIWIl4]l01] 0] 0] (definition ..
tommm e + + + + e e e e
- len padding

LATEST

)

SQUARE

Forth words :

| EXIT |

*

0 | DOCOL | DUP

| Ul AIRIE.]

Q

S

| LINK | 6

pad

len name

Native (assembly) words : DUP

Fom— b ——+
| LINK | 3|1 D | U | P | CODEQOFDUP |
o ——

len name

CODEQFDUP:
mov (%esp), %eax
push ’eax
NEXT

How to get the code address of an entry ?

> To get the code address of an entry we usa the >CFA word.

- + + + t=———t———t———t———
| LINK | 31 D | U | P | CODEOFDUP |
- + t + el et Lt Lt

>CFA

The implemetation of CFA is simple, the only complication is calculating the
padding size to skip. Left as an exercise for the reader !

How to find an entry 7

> FIND (name? — address).
» FIND start at latest, and traverses the linked list.

> For each entry it compares the name of the entry with name?. If they
match, FIND returns the address of the entry.

» The code is simple.

pop %ecx ; pop hedi // Jecx = length, Jedi = address

push Yesi // save %esi which is used by cmpsb

mov LATEST, %edx // LATEST points to latest word

1: test %edx,%edx // NULL pointer? (end of the linked list)
je 4f // Word not found return NULL

// Compare the length
xor heax,heax
movb 4(%edx),%al // length field
cmpb %cl,%al // Length is the same?
jne 2f // Not the same

How to find an entry 7

push Yecx // Save the length

push Yedi // Save the address (repe cmpsb will move thi
lea 5(%edx),%esi // Dictionary string we are checking against.
repe cmpsb // Compare the strings.

pop hedi

pop hecx

jne 2f // Not the same.

// The strings are the same - return the header pointer in %eax
mov Y%edx, %eax
pop %esi
ret

2: mov (Y%edx),%edx // Move to the previous word
jmp 1b // .. and loop.

Section 5

Native Words

Adding native words to our forth

» Before writing forth words in forth we need to add a set of primitive native

words.
» DUP, DROP, SWAP, OVER, ROT, +, *, /MOD, =, <, 0=, etc...
> Jones's forth uses an assembly macro to add words to the dictionary:
> The macro adds a link to the address of the previous word (LINK).

> It updates LINK with the new word's address.
> It adds the len and name field.

defcode "DUP",3,,DUP
mov (%esp),%eax // Read top of the stack in %eax

push %eax // Push Yeax on the stack

NEXT

Adding native words to our forth

EXERCICE: Give assembly implementation of

v

DROP: drops the first element of the stack.
OVER: reads the second element of the stack and pushes it to the top.

v

> +: adds the top two elements of the stack.

\4

I (data address —): write data at address
@ (address — data): reads data at address

\{

Adding native words to our forth

defcode "DROP",4, ,DROP
pop ‘heax
NEXT

defcode "OVER",5,,0VER
mov 4(%esp), %heax

push ’eax
NEXT

defcode "+",1,,ADD
pop %eax
add Y%eax, (%esp)
NEXT

defcode "!",1,,STORE defcode "@",1,,FETCH
pop hebx // address pop %ebx // address
pop heax // data mov (%ebx), ‘eax
mov %eax, (%ebx) push Jeax

NEXT NEXT

Section 6

10

Input Output

» KEY (— ¢) : Reads a character from stdin.

» EMIT (¢ —) : Writes a character to stdout.

» WORD (— addr length) : Reads the next word from stdin and stores it
into the stack as (address, length)

» NUMBER (— n) : Reads a number from stdin.

> In Jones's forth these are implemented in assembly (< 100 lines). We do
not discuss their implementation here, but feel free to check it out !

Section 7

Branching

Branching BRANCH, OBRANCH

BRANCH and O0BRANCH are like LIT, they are followed by a NUMBER. In this
case, the number represents a jump offset.

» BRANCH OFFSET (-) : Increments the IP
» 0BRANCH OFFSET (cond —) : If cond is 0, increment

defcode "BRANCH",6,,BRANCH
add (%esi), Y%esi
NEXT
defcode "OBRANCH",7,,ZEROBRANCH
pop eax // Read cond
test Yeax, %heax
jz BRANCH
lodsl // Otherwise skip the offset
NEXT

Summary until now

» First, we decided to use Indirect threaded code. We implemented NEXT,
DOCOL and EXIT.

> Next, we implemented LIT to mix code and data in a word definition.

> Then, we defined the dictionary structure and added Native assembly
words.

» Until now everything is hardcoded. Now we get into compiling new words !

Section 8

Compiling new words

Writing to memory: COMMA

, is a forth word that stores the top of the stack at HERE and increments
HERE.

defcode ",",1,,COMMA
pop %eax // Get the top of the stack
mov HERE, %edi // Load HERE address in %edi
stosl // Store the top of the stak in %edi
mov %edi, HERE // Update HERE address
NEXT

CREATE

» CREATE takes a string name on the stack and creates a new dictionary

entry on the user memory.

defcode "CREATE",6,,CREATE
pop hecx ; pop %hebx // Read the length and address of

mov HERE, Yedi

//
//

mov LATEST, %eax //

stosl

mov %cl, %al
stosb

//

/7
//

// the string name.

HERE points to the first free address
in user memory

LATEST points to the last defined word
Store the link

Read the length
Store the length

CREATE

push %esi // Save %esi

mov %ebx, %esi // Put the address of the name in Y%esi
rep movsb // Store the name

pop hesi // Restore %esi

add $3, Jedi
and $73, %edi // Compute padding size

mov HERE, %eax // Update variables
mov Y%eax, LATEST

mov %edi, HERE

NEXT

Compile and Immediate mode

> The forth interpreter usually is in immediate mode. It reads words from
stdin and executes them.

> We can use a special word [to get into compile mode. In compile mode
the interpreter reads words from stdin but writes their address to HERE.

» To get out of compile mode, we use].

» Some words are flagged as IMMEDIATE. IMMEDIATE words are always
executed, both in compile and immediate modes.

The current mode is stored in a global variable STATE

defcode "[",1,F_IMMED,LBRAC
mov $0, STATE
NEXT

defcode "]",1,F_IMMED,RBRAC
mov $1, STATE
NEXT

Getting the address of words, TICK

g

word gets the address of the next word on the stack. So for example '
SQUARE will return the CFA of SQUARE.

defcode "’",1,,TICK
WORD
FIND
>CFA
NEXT

Compiling new words, COLON

Now everything is ready to define *:"

COLON:

WORD (Read the next word into the stack as a string)

CREATE (Create a new dictionary entry named after the string)
> DOCOL , (Compile the address of DOCOL)

[(Enter compilation mode)

EXIT

Compiling new words, SEMICOLON

won

And to end the compilation of a new word we use *;

SEMICOLON: IMMEDIATE
> EXIT , (Compile the address of EXIT at the end)
] (Exit compilation mode)
EXIT

Why must ;" be IMMEDIATE ?

The interpreter

INTERPRET : (in pseudo-code)
WORD (Read a word from stdin)
FIND (Find it in the dictionary)
IF FOUND
>CFA (Get its code address)
IF IMMEDIATE? or IMMEDIATE MODE
JMP (Jump to the code address)
ELSE
, (Compile the code address to HERE)

ELSE (Not a word in dictionary)
IF NUMBER? (If it is a number)
NUMBER (Read the number)
IF IMMEDIATE MODE
PUSH NUMBER
ELSE
> LIT , , (Compile LIT number)
ELSE ERROR

Section 9

The rest

What about the rest ?

» So, what about the rest ? Where is NEGATE, IF, CONSTANT,
VARIABLE, BEGIN UNTIL, and all the other forth words ?

» Now that we bootstraped the compiler, everything else can be written in
forth !

NEGATE

: NEGATE (n -- -n) O SWAP - ;

CONSTANT

CONSTANT is a forth word that creates a new word, here TEN, that pushes
10 on the stack.

10 CONSTANT TEN
TEN . CR
10

How can we define CONSTANT in forth ?

CONSTANT

: CONSTANT
WORD
CREATE
> DOCOL
> LIT ,

(n--)

(Read the name)

(Create a new dictionnary entry)
, (Compile DOCOL)

(Compile LIT)

, (Compile n)

> EXIT ,

(Compile EXIT)

Calling 10 CONSTANT TEN will compile the following entry:

Fommm s TR +

| LINK | 3
Fo——————— +-

——

| T|E | N | DOCOL | LIT | 10 | EXIT |

+ — +
+ — +

e +

——t

BEGIN UNTIL

: count (n --) BEGIN 1- DUP . DUP 0= UNTIL ;
10 count 9 8 76 543210

How to define BEGIN and UNTIL 7

BEGIN UNTIL

: BEGIN IMMEDIATE

HERE @ (save location on the stack)

: UNTIL IMMEDIATE
> OBRANCH , (Compile a conditional branch)
HERE @ - (Compute offset)
s (Compile the offset)

	Introduction
	The execution model
	Literals
	Dictionary
	Native Words
	IO
	Branching
	Compiling new words
	The rest

