
ASE: Writing a forth interpreter from scratch

Pablo de Oliveira <pablo.oliveira@uvsq.fr>

January 18, 2013

mailto:pablo.oliveira@uvsq.fr

Section 1

Introduction

Why an embedded Forth interpreter ?

I Forth is minimal: writing a Forth interpreter for a new architecture is
simple and fast.

I A full Forth system can be written in less than 2000 lines of codes.

I Forth is powerful for testing embedded systems:

I Comes with a REPL (Read-Eval Print Loop), we can test the target
interactively.

I It is very easy to define new words to control the target.

LEFT-MOTOR 50 SPEED

2 LED ON

: TURN-RIGHT (--)

RIGHT-MOTOR 0 SPEED

LEFT-MOTOR 50 SPEED

2 WAIT

LEFT-MOTOR 0 SPEED

;

Lecture Goal : Building a forth interpreter from scratch !

I Know how to build Forth from scratch starting from assembly.

I We study Richard W.M. Jones’s Forth minimal implementation. Most of
the code samples in this lecture are borrowed from Jones’s Forth.
http://git.annexia.org/?p=jonesforth.git

I Target: x86 architecture, you will port it to ARM !

http://git.annexia.org/?p=jonesforth.git

Section 2

The execution model

Execution Model

I In a forth system there are two kind of words definitions:

I Native words: these words are written in assembly (or other low level
language).

I Forth words: these words are written in forth by calling other native or forth
words.

I Our execution model needs to be able to execute both kind of words.

Call Threaded Code

: SQUARE DUP * ;

SQUARE: (a forth word)

call DUP

call MUL

ret

DUP: (a native word)

mov (%esp), %eax

push %eax

ret

MUL: (a native word)

pop %eax

pop %ebx

imull %ebx, %eax

push %eax

ret

I Simple but overhead of call and ret instructions.

Direct Threaded Code

I Instead of the calls, we store the adresses of the words:

: SQUARE DUP * ;

SQUARE:

&DUP

&MUL <-- %esi points to the next word to execute

&EXIT

I A definition is a list of adresses and not executable. We introduce a new
assembly macro NEXT. NEXT is called at the end of each word execution.
It jumps to the next word (pointed by %esi) and increments %esi.

NEXT:

lodsl // loads (%esi) into eax and increments %esi

jmp *%eax

Direct Threaded Code

SQUARE:

&DUP

&MUL

&EXIT

DUP:

mov (%esp), %eax

push %eax

NEXT

MUL:

pop %eax

pop %ebx

imull %ebx, %eax

push %eax

NEXT

Something is missing:

I How do we start executing SQUARE ?

I How do we call SQUARE from another word ?

Direct Threaded Code

SQUARE:

CALL DOCOL<-.

&DUP |

&MUL | EXIT:

&EXIT | NEXT: mov (%ebp), %esi

POW4: | lodsl add $4, %ebp // Restore old IP

CALL DOCOL | jmp *%eax NEXT

&SQUARE ----’

&SQUARE

&EXIT

DOCOL:

sub $4, %ebp

mov %esi, (%ebp) // Save the old IP on the stack

add $4, %eax // %eax points to the adress of SQUARE DOCOL

// We increment it to point to &DUP

mov %eax, %esi

NEXT

Indirect Threaded Code

I Direct Threaded Code

I Overhead of one call at the start of each Forth word.
I Cache usage is non-optimal because we mix data and code.
I Still very fast and simple.

I Indirect Threaded Code

I We add one level of indirection:

We replace:

SQUARE: SQUARE:
CALL DOCOL &DOCOL
&DUP with &DUP
&MUL &MUL
&EXIT &EXIT

I Reduces a bit the code size at the cost of an indirection.

I Does not mix code and data.

Execution Model Conclusion

I The execution model specifies how forth words are executed.

I Jones’s Forth uses Indirect Threaded Code as most forths.

I ITC works exactly as DTC but with an extra level of indirection:

NEXT (DTC) :

lodsl // loads %esi into eax and increments %esi

jmp *%eax

|

|

V

NEXT (ITC) :

lodsl // loads %esi into eax and increments %esi

jmp *(%eax)

Section 3

Literals

Literals

How to add data inside a forth word ?

: DOUBLE (n -- n) 2 * ;

is compiled to

DOUBLE:

&DOCOL

2 <- This is not an adress. NEXT will fail.

&MUL

&EXIT

Idea: use special word LIT. LIT will push 2 in the stack and skip 2.

DOUBLE:

&DOCOL

&LIT

2

&MUL

&EXIT

Literals

DOUBLE:

&DOCOL

&LIT

2

&MUL

&EXIT

How is LIT implemented ?

LIT:

lodsl // read literal (pointed by %esi) into %eax

// and increment %esi

push %eax // push literal into the stack

NEXT

Section 4

Dictionary

The Dictionary

I In Forth words are kept into a Dictionary.

I It is a linked list:

NULL

^

| (4b) (1b) (4b aligned)

+--|------+---+---+---+---+---+---+---+---+------------- - - - -

| LINK | 6 | S | Q | U | A | R | E | 0 | (definition ...)

+---------+---+---+---+---+---+---+---+---+------------- - - - -

^ len padding

|

+--|------+---+---+---+---+---+---+---+---+----- - - - -

| LINK | 4 | P | O | W | 4 | 0 | 0 | 0 | (definition ...)

+---------+---+---+---+---+---+---+---+---+----- - - - -

^ len padding

|

LATEST

Forth words : SQUARE

+------+---+---+---+---+---+---+---+---+-------+-----+---+------+

| LINK | 6 | S | Q | U | A | R | E | 0 | DOCOL | DUP | * | EXIT |

+------+---+---+---+---+---+---+---+---+-------+-----+---+------+

len name pad

Native (assembly) words : DUP

+------+---+---+---+---+---+---+---+

| LINK | 3 | D | U | P | CODEOFDUP |

+------+---+---+---+---+---+---+---+

len name

CODEOFDUP:

mov (%esp), %eax

push %eax

NEXT

How to get the code address of an entry ?

I To get the code address of an entry we usa the >CFA word.

+------+---+---+---+---+---+---+---+

| LINK | 3 | D | U | P | CODEOFDUP |

+------+---+---+---+---+---+---+---+

len name ^

| |

| |

’----------------------’

>CFA

The implemetation of CFA is simple, the only complication is calculating the
padding size to skip. Left as an exercise for the reader !

How to find an entry ?

I FIND (name? – address).

I FIND start at latest, and traverses the linked list.

I For each entry it compares the name of the entry with name?. If they
match, FIND returns the address of the entry.

I The code is simple.

pop %ecx ; pop %edi // %ecx = length, %edi = address

push %esi // save %esi which is used by cmpsb

mov LATEST,%edx // LATEST points to latest word

1: test %edx,%edx // NULL pointer? (end of the linked list)

je 4f // Word not found return NULL

// Compare the length

xor %eax,%eax

movb 4(%edx),%al // length field

cmpb %cl,%al // Length is the same?

jne 2f // Not the same

How to find an entry ?

push %ecx // Save the length

push %edi // Save the address (repe cmpsb will move this pointer)

lea 5(%edx),%esi // Dictionary string we are checking against.

repe cmpsb // Compare the strings.

pop %edi

pop %ecx

jne 2f // Not the same.

// The strings are the same - return the header pointer in %eax

mov %edx, %eax

pop %esi

ret

2: mov (%edx),%edx // Move to the previous word

jmp 1b // .. and loop.

Section 5

Native Words

Adding native words to our forth

I Before writing forth words in forth we need to add a set of primitive native
words.

I DUP, DROP, SWAP, OVER, ROT, +, *, /MOD, =, <, 0=, etc. . .

I Jones’s forth uses an assembly macro to add words to the dictionary:

I The macro adds a link to the address of the previous word (LINK).
I It updates LINK with the new word’s address.
I It adds the len and name field.

defcode "DUP",3,,DUP

mov (%esp),%eax // Read top of the stack in %eax

push %eax // Push %eax on the stack

NEXT

Adding native words to our forth

EXERCICE: Give assembly implementation of

I DROP: drops the first element of the stack.

I OVER: reads the second element of the stack and pushes it to the top.

I +: adds the top two elements of the stack.

I ! (data address –): write data at address

I @ (address – data): reads data at address

Adding native words to our forth

defcode "DROP",4,,DROP

pop %eax

NEXT

defcode "OVER",5,,OVER

mov 4(%esp), %eax

push %eax

NEXT

defcode "+",1,,ADD

pop %eax

add %eax, (%esp)

NEXT

defcode "!",1,,STORE defcode "@",1,,FETCH

pop %ebx // address pop %ebx // address

pop %eax // data mov (%ebx), %eax

mov %eax, (%ebx) push %eax

NEXT NEXT

Section 6

IO

Input Output

I KEY (– c) : Reads a character from stdin.

I EMIT (c –) : Writes a character to stdout.

I WORD (– addr length) : Reads the next word from stdin and stores it
into the stack as (address, length)

I NUMBER (– n) : Reads a number from stdin.

I In Jones’s forth these are implemented in assembly (< 100 lines). We do
not discuss their implementation here, but feel free to check it out !

Section 7

Branching

Branching BRANCH, 0BRANCH

BRANCH and 0BRANCH are like LIT, they are followed by a NUMBER. In this
case, the number represents a jump offset.

I BRANCH OFFSET (–) : Increments the IP

I 0BRANCH OFFSET (cond –) : If cond is 0, increment

defcode "BRANCH",6,,BRANCH

add (%esi), %esi

NEXT

defcode "0BRANCH",7,,ZEROBRANCH

pop %eax // Read cond

test %eax, %eax

jz BRANCH

lodsl // Otherwise skip the offset

NEXT

Summary until now

I First, we decided to use Indirect threaded code. We implemented NEXT,
DOCOL and EXIT.

I Next, we implemented LIT to mix code and data in a word definition.

I Then, we defined the dictionary structure and added Native assembly
words.

I Until now everything is hardcoded. Now we get into compiling new words !

Section 8

Compiling new words

Writing to memory: COMMA

, is a forth word that stores the top of the stack at HERE and increments
HERE.

defcode ",",1,,COMMA

pop %eax // Get the top of the stack

mov HERE, %edi // Load HERE address in %edi

stosl // Store the top of the stak in %edi

mov %edi, HERE // Update HERE address

NEXT

CREATE

I CREATE takes a string name on the stack and creates a new dictionary
entry on the user memory.

defcode "CREATE",6,,CREATE

pop %ecx ; pop %ebx // Read the length and address of

// the string name.

mov HERE, %edi // HERE points to the first free address

// in user memory

mov LATEST, %eax // LATEST points to the last defined word

stosl // Store the link

mov %cl, %al // Read the length

stosb // Store the length

CREATE

push %esi // Save %esi

mov %ebx, %esi // Put the address of the name in %esi

rep movsb // Store the name

pop %esi // Restore %esi

add $3, %edi

and $~3, %edi // Compute padding size

mov HERE, %eax // Update variables

mov %eax, LATEST

mov %edi, HERE

NEXT

Compile and Immediate mode

I The forth interpreter usually is in immediate mode. It reads words from
stdin and executes them.

I We can use a special word [to get into compile mode. In compile mode
the interpreter reads words from stdin but writes their address to HERE.

I To get out of compile mode, we use].

I Some words are flagged as IMMEDIATE. IMMEDIATE words are always
executed, both in compile and immediate modes.

The current mode is stored in a global variable STATE

defcode "[",1,F_IMMED,LBRAC

mov $0, STATE

NEXT

defcode "]",1,F_IMMED,RBRAC

mov $1, STATE

NEXT

Getting the address of words, TICK

“”’ word gets the address of the next word on the stack. So for example ’
SQUARE will return the CFA of SQUARE.

defcode "’",1,,TICK

WORD

FIND

>CFA

NEXT

Compiling new words, COLON

Now everything is ready to define “:”

COLON:

WORD (Read the next word into the stack as a string)

CREATE (Create a new dictionary entry named after the string)

’ DOCOL , (Compile the address of DOCOL)

[(Enter compilation mode)

EXIT

Compiling new words, SEMICOLON

And to end the compilation of a new word we use “;”

SEMICOLON: IMMEDIATE

’ EXIT , (Compile the address of EXIT at the end)

] (Exit compilation mode)

EXIT

Why must “;” be IMMEDIATE ?

The interpreter

INTERPRET : (in pseudo-code)

WORD (Read a word from stdin)

FIND (Find it in the dictionary)

IF FOUND

>CFA (Get its code address)

IF IMMEDIATE? or IMMEDIATE MODE

JMP (Jump to the code address)

ELSE

, (Compile the code address to HERE)

ELSE (Not a word in dictionary)

IF NUMBER? (If it is a number)

NUMBER (Read the number)

IF IMMEDIATE MODE

PUSH NUMBER

ELSE

’ LIT , , (Compile LIT number)

ELSE ERROR

Section 9

The rest

What about the rest ?

I So, what about the rest ? Where is NEGATE, IF, CONSTANT,
VARIABLE, BEGIN UNTIL, and all the other forth words ?

I Now that we bootstraped the compiler, everything else can be written in
forth !

NEGATE

: NEGATE (n -- -n) 0 SWAP - ;

CONSTANT

CONSTANT is a forth word that creates a new word, here TEN, that pushes
10 on the stack.

10 CONSTANT TEN

TEN . CR

10

How can we define CONSTANT in forth ?

CONSTANT

: CONSTANT (n --)

WORD (Read the name)

CREATE (Create a new dictionnary entry)

’ DOCOL , (Compile DOCOL)

’ LIT , (Compile LIT)

, (Compile n)

’ EXIT , (Compile EXIT)

;

Calling 10 CONSTANT TEN will compile the following entry:

+---------+---+---+---+---+-------+-----+----+------+

| LINK | 3 | T | E | N | DOCOL | LIT | 10 | EXIT |

+---------+---+---+---+---+-------+-----+----+------+

BEGIN UNTIL

: count (n --) BEGIN 1- DUP . DUP 0= UNTIL ;

10 count 9 8 7 6 5 4 3 2 1 0

How to define BEGIN and UNTIL ?

BEGIN UNTIL

: BEGIN IMMEDIATE

HERE @ (save location on the stack)

;

: UNTIL IMMEDIATE

’ 0BRANCH , (Compile a conditional branch)

HERE @ - (Compute offset)

, (Compile the offset)

;

	Introduction
	The execution model
	Literals
	Dictionary
	Native Words
	IO
	Branching
	Compiling new words
	The rest

