Computer Science Introductory Course MSc - Introduction to Java

Computer Science Introductory Course MSc -

Introduction to Java
Lecture 2: Object Oriented Programming

Pablo Oliveira <pablo@sifflez.org>

ENST

Computer Science Introductory Course MSc - Introduction to Java

Outline

References
Inheritance
Encapsulation
Polymorphism
Interfaces

@B Summary

Computer Science Introductory Course MSc - Introduction to Java

Introduction : Object Oriented Programming

m In the last lecture we learned that we can structure programs using
objects of many classes.

m In this lecture we will examine OOP concepts in more detail :

constructors : creating new objects.
references : designating objects.
inheritance : creating families of classes.
encapsulation : hiding implementation.
polymorphism : factorizing common behaviours.
interfaces : behavioral contracts.

Computer Science Introductory Course MSc - Introduction to Java

Constructors : creating a new object

Constructors are special methods that are called to create a new instance
of their class.

class BankAccount {
int balance;
BankAccount () {
balance = 0;
}
BankAccount (int initialDeposit){
balance = initialDeposit;
}
}

accountl = new BankAcconut ();
account2 = new BankAccount(100);

Computer Science Introductory Course MSc - Introduction to Java

L References

Outline

References

Computer Science Introductory Course MSc - Introduction to Java

L References

References

m When a variable is assigned a primitive type it contains a value.

m When assigned an object, array or string, it contains a reference to
the data.

m If a is copied or passed, old and new references point to the same

original object.

static void changeValues (int anArray[], int value){
anArray [0] = 42;
value = 42;

}

public static void main (String args[]){
int v=20; int[] a = {0,0};
System.out.printin(v + "_" + a[0] + "_" + a[l])
changeValues(a,v);
System.out. printin(v + """ 4+ a[0] + """ + a[1l]);
}
output
000
0 42 0

Computer Science Introductory Course MSc - Introduction to Java
= References

Immutability

m String are a special case, because they are immutable (cannot be
changed).

m When you change a String a new different String is created and the
characters of the orignal one are copied.

m For performance : do not build a string with concatenation, use
StringBuilder.

public static void main (String args|[]) {

String sl = "hello"”;

String s2 = sl;

sl = s1 4+ "I'";

System.out.println (sl + " " + s2);
}
output

hello! hello

Computer Science Introductory Course MSc - Introduction to Java

L Inheritance

Outline

Inheritance

Computer Science Introductory Course MSc - Introduction to Java

L Inheritance

Inheritance

Q : Remember our turtle ? It could turn and advance. But we want a new
class Crab that advances sideways ...

m We could write a new class Crab, but there would a lot of code in
common with Turtle (which makes the code base difficult to
maintain).

m We are going to use inheritance.

m Inheritance makes it possible to create a subclass that inherits the
properties of its ancestor or superclass.

Animal superclass
Turtle Crab subclass
RedCrab

Computer Science Introductory Course MSc - Introduction to Java

L Inheritance

Inheritance

class Animal {
Color color;
Position position;
double rotation;

void turn(double angle) {};
void advance() {};

}

class Crab extends Animal{
void advance() {
/* code for moving sideways x/

¥
}

Crab crab = new Crab();
crab.color = Color.BLUE;
crab.advance ();

Computer Science Introductory Course MSc - Introduction to Java

L Inheritance

overriding and hiding

What we just did with method advance is called overriding.
m When we call crab.advance() the crab’s advance is called !
m The animal’'s advance has been overrided.

m If a method is not overriden, the superclass’ is used (here
crab.turn(10); would call Animal’s turn implementation.

m the final keyword in a method declaration indicates that the
method cannot be overridden.

overriding a static method or a variable is called hiding, because the new

static implementation or variable hides the old one, doing this is usually a
bad idea.

Computer Science Introductory Course MSc - Introduction to Java

L Inheritance

this and super

m for a given class this represents the current class and super the
superclass.

m super is used to call overriden superclass’ methods.

class Animal {
void advance();
}

class Crab extends Animal{
String name;
advance () {
this.turn(90);
super .advance ();
this . turn(—90);

}

Computer Science Introductory Course MSc - Introduction to Java

L Inheritance

Inheritance and Constructors

m In java all the classes are subclasses of the Object class.

m A subclass constructor will always call a superclass constructor.

m |f a class possess no constructor, an empty one with no parameters
is implicit.

m Every constructor of a subclass call the no-parameters superclass

constructor.
m But we can control this with super and this keywords.

Object()

[
Animal()

T
I I

Crab() Crab(String name)

I

RedCrab(String name)

Computer Science Introductory Course MSc - Introduction to Java
I—Inheritance

class Animal {
Position position;
double rotation ;

Animal(Position position, double rotation) {
this . position = position;
this.rotation = rotation ;

class Crab extends Animal{
String name;
Crab(Position position) {
super(position , 90);
¥

Crab(Position position, String name) {
this (position);
this .name = name;
}
}

Computer Science Introductory Course MSc - Introduction to Java

L Inheritance

abstract methods

Suppose we add birds to our class hierarchy.
m birds and crabs do not move the same way... there is no common
implementation for advance that we can put in Animals.

m we could create an empty advance () in the Animal class and
override it in Bird and Crab.

m Yet, another programer could add a new subclass and forget to
implement the advance () method.

m [hus, we use abstract methods.

m An abstract method is a method which has no implementation.
m An abstract class is a class with abstract methods.

m It is mandatory for all the non-abstract subclasses to override all the
abstract methods.

m An abstract class cannot be instantiated.

Computer Science Introductory Course MSc - Introduction to Java
I—Inheritance

abstract class Animal {
Position position;
double rotation;

abstract void advance();

}

class Crab extends Animal{
String name;
void advance() {
/* crab moves x/

}
}

Animal a = new Animal(); // COMPILATION ERROR
Crab c = new Crab(); // Works!

Computer Science Introductory Course MSc - Introduction to Java

L Encapsulation

Outline

Encapsulation

Computer Science Introductory Course MSc - Introduction to Java

L Encapsulation

Encapsulation

Encapsulation is the act of hiding properties and methods inside a class.

m This allows to protect classes from unexpected side-effects from the
outside.

m It also enforces implementation agnostic programming, which is a
good idea.

Computer Science Introductory Course MSc - Introduction to Java

L Encapsulation

Packages

m A package is a group of classes.
m Packages define a namespace.

m Classes in the same package share the same namespace.

package Animals;
class Animal{}
class Crab{}

import Animals.Crab;
import Animals. x;
class MyProgram{}

Computer Science Introductory Course MSc - Introduction to Java

L Encapsulation

Acces modifiers

In java encapsultation is obtained through acces/visibility modifiers.

m Classes can be public, visible by everyone
or without modifier in which case they are only visible inside their
package (a group of classes).

m Class members (variables and methods) can have 4 modifiers with
different degrees of visibility.

Modifier Class | Package | Subclass | World

public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

Computer Science Introductory Course MSc - Introduction to Java
L Encapsulation

packages animals;
class Animal {
private double rotation;
public void turn(double angle)
{position 4= angle;}
}
class Crab extends Animal {
public void turnBack() {
turn (180); /] legal
rotation += 180; // illegal
}
}

Computer Science Introductory Course MSc - Introduction to Java

L Polymorphism

Outline

Polymorphism

Computer Science Introductory Course MSc - Introduction to Java
L Polymorphism

Q : How to make a group of animals advance?

m We want to make a group of animals (crabs and turtles) advance at

the same time.
m We need a container for all of them, what is the container type?

- Nightmare

int numberCrabs; int numberTurtles;
Crab[] crabs;
Turtle[] turtles;

moveAllAnimals () {
for(int i=0; i < numberCrabs; i++)
crabs[i].advance();
for(int i=0; i < numberTurtles; i++)
turtles[i].advance();
}
void addCrab (Crab c) {crabs[numberCrabs++]|=c;}
void addTurtle (Turtle t)
{turtles [numberTurtles++]=t;}

addCrab(new Crab());
addTurtle(new Turtle ());

Computer Science Introductory Course MSc - Introduction to Java

L Polymorphism

Polymorphism

Use Polymorphism, or the capacity to treat an instance as one of its
super classes

int numberAnimals;
Animal [] animals;
void moveAllAnimals(){
for (int i=0; i < numberAnimals; i++)
animals[i].advance();
}

void addAnimal(Animal a)
{animals[numberAnimals++] = a;}

addAnimal(new Crab());
addAnimal(new Turtle());

. Better

Computer Science Introductory Course MSc - Introduction to Java

L Polymorphism

Dynamic and Static type : Casts

Animal animal;
animal = new Crab ();

static type Animal
dynamic type Crab

m when calling an instance method the dynamic type is used.
m when calling a static method the static type is used.

m you can force the static type (only to super-classes of the dynamic
type, or to the dynamic type) using casts :

Crab ¢ = (Crab) animal; // OK
Turtle t = (Turtle) animal; // Runtime ERROR

Computer Science Introductory Course MSc - Introduction to Java

L Polymorphism

Dynamic dispatching

m When you call an instance method, the method used is the one
provided by the dynamic class, this is called dynamic dispatching.
m It is the really powerful idea behind polymorphism :

m You can treat a group of objects the same way
m When you do an operation on one of the objects, the adequate

operation will be chosen depending on the dynamic type of the
object.

Computer Science Introductory Course MSc - Introduction to Java

L Interfaces

Outline

Interfaces

Computer Science Introductory Course MSc - Introduction to Java

L Interfaces

Multiple inheritance ?

m We have added further classes to our animal class hierarchy :
Swimming with method swim(), Walking with method walk().

m As our turtle can both swim and walk we would like it to inherit
from both classes.

m But in java this is forbidden.

Computer Science Introductory Course MSc - Introduction to Java

L Interfaces

Multiple inheritance : problem

class A
A.doIt();
class Bl class B2

override: Bl.doIt(); override: B2.doIt();

NS

class C
doIt() 7

When we call doIt() on C, do we call B1 or B2 implementation ?
Multiple answers to this problem (see for example Eiffel's nice solution),
Java Answer : Interfaces.

Computer Science Introductory Course MSc - Introduction to Java

L Interfaces

Interfaces

An interface is a behavioural contract that a class decides to honor.

m Concretely, an interface is a collection of method signatures.

m If a class implements an interface, it has to provide a body for each
of those methods.

m A class can implement multiple interfaces.

m An interface can extend another (single) interface.

Q : Why does it solves the multiple inheritance problem 7 A : We multiply
interface, we do not multiply implementation...

Computer Science Introductory Course MSc - Introduction to Java

L Interfaces

Multiple inheritance with interfaces

interface A

doIt();
extends extends
interface Bl interface B2
doIt(); doIt();

implements implements

L L

class C
C.doIt()

B2 and B1 asked for a method doIt, C provides it, no ambiguity

Computer Science Introductory Course MSc - Introduction to Java
= Interfaces

public interface Swimming {
void swim();
}

public interface Walking {
void walk();
}

class Turtle extends Animal
implements Swimming, Walking{
void swim() { /% swim implementation x*/}
void walk() { /% walk implementation x*/}

}

Computer Science Introductory Course MSc - Introduction to Java

I—Summary

Summary

m To factorize code, creating classes hierarchies is important.

m Each class should hide its implementation to make code robust and
maintainable.

m With polymorphism one can design elegant, factorised code.

m When an object implements different behaviours, one should use
interfaces.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. @

	References
	Inheritance
	Encapsulation
	Polymorphism
	Interfaces
	Summary

