
Computer Science Introductory Course MSc - Introduction to Java

Computer Science Introductory Course MSc -
Introduction to Java

Lecture 2: Object Oriented Programming

Pablo Oliveira <pablo@sifflez.org>

ENST

Computer Science Introductory Course MSc - Introduction to Java

Outline

1 References

2 Inheritance

3 Encapsulation

4 Polymorphism

5 Interfaces

6 Summary

Computer Science Introductory Course MSc - Introduction to Java

Introduction : Object Oriented Programming

In the last lecture we learned that we can structure programs using
objects of many classes.

In this lecture we will examine OOP concepts in more detail :

constructors : creating new objects.
references : designating objects.

inheritance : creating families of classes.
encapsulation : hiding implementation.
polymorphism : factorizing common behaviours.

interfaces : behavioral contracts.

Computer Science Introductory Course MSc - Introduction to Java

Constructors : creating a new object

Definition

Constructors are special methods that are called to create a new instance
of their class.

c l a s s BankAccount {
i n t ba l ance ;
BankAccount () {

ba l ance = 0 ;
}
BankAccount (i n t i n i t i a l D e p o s i t){

ba l ance = i n i t i a l D e p o s i t ;
}

}

account1 = new BankAcconut () ;
account2 = new BankAccount (1 0 0) ;

Computer Science Introductory Course MSc - Introduction to Java

References

Outline

1 References

2 Inheritance

3 Encapsulation

4 Polymorphism

5 Interfaces

6 Summary

Computer Science Introductory Course MSc - Introduction to Java

References

References

When a variable is assigned a primitive type it contains a value.
When assigned an object, array or string, it contains a reference to
the data.
If a is copied or passed, old and new references point to the same
original object.

s t a t i c vo id changeVa lues (i n t anArray [] , i n t v a l u e){
anArray [0] = 42 ;
v a l u e = 42 ;

}
pub l i c s t a t i c vo id main (S t r i n g a r g s []) {

i n t v = 0 ; i n t [] a = {0 ,0} ;
System . out . p r i n t l n (v + ” ” + a [0] + ” ” + a [1]) ;
changeVa lues (a , v) ;
System . out . p r i n t l n (v + ” ” + a [0] + ” ” + a [1]) ;

}
output :
0 0 0
0 42 0

Computer Science Introductory Course MSc - Introduction to Java

References

Immutability

String are a special case, because they are immutable (cannot be
changed).

When you change a String a new different String is created and the
characters of the orignal one are copied.

For performance : do not build a string with concatenation, use
StringBuilder.

pub l i c s t a t i c vo id main (S t r i n g a r g s []) {
S t r i n g s1 = ”h e l l o ” ;
S t r i n g s2 = s1 ;
s1 = s1 + ”! ” ;
System . out . p r i n t l n (s1 + ” ” + s2) ;

}

output :
h e l l o ! h e l l o

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

Outline

1 References

2 Inheritance

3 Encapsulation

4 Polymorphism

5 Interfaces

6 Summary

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

Inheritance

Q : Remember our turtle ? It could turn and advance. But we want a new
class Crab that advances sideways ...

We could write a new class Crab, but there would a lot of code in
common with Turtle (which makes the code base difficult to
maintain).

We are going to use inheritance.

Inheritance makes it possible to create a subclass that inherits the
properties of its ancestor or superclass.

Animal

Turtle Crab

RedCrab

superclass

subclass

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

Inheritance

c l a s s Animal {
Co lo r c o l o r ;
P o s i t i o n p o s i t i o n ;
double r o t a t i o n ;

vo id t u rn (double ang l e) {} ;
vo id advance () {} ;

}

c l a s s Crab extends Animal{
vo id advance () {

/∗ code f o r moving s ideways ∗/
}

}

Crab c rab = new Crab () ;
c rab . c o l o r = Co lo r .BLUE ;
c rab . advance () ;

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

overriding and hiding

What we just did with method advance is called overriding.

When we call crab.advance() the crab’s advance is called !

The animal’s advance has been overrided.

If a method is not overriden, the superclass’ is used (here
crab.turn(10); would call Animal’s turn implementation.

the final keyword in a method declaration indicates that the
method cannot be overridden.

overriding a static method or a variable is called hiding, because the new
static implementation or variable hides the old one, doing this is usually a
bad idea.

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

this and super

for a given class this represents the current class and super the
superclass.
super is used to call overriden superclass’ methods.

c l a s s Animal {
vo id advance () ;

}

c l a s s Crab extends Animal{
S t r i n g name ;
advance () {

t h i s . t u rn (9 0) ;
super . advance () ;
t h i s . t u rn (−90);

}
}

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

Inheritance and Constructors

In java all the classes are subclasses of the Object class.
A subclass constructor will always call a superclass constructor.
If a class possess no constructor, an empty one with no parameters
is implicit.
Every constructor of a subclass call the no-parameters superclass
constructor.
But we can control this with super and this keywords.

Object()

Animal()

Crab()

RedCrab(String name)

Crab(String name)

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

c l a s s Animal {
Po s i t i o n p o s i t i o n ;
double r o t a t i o n ;

Animal (P o s i t i o n p o s i t i o n , double r o t a t i o n) {
t h i s . p o s i t i o n = p o s i t i o n ;
t h i s . r o t a t i o n = r o t a t i o n ;

}
}

c l a s s Crab extends Animal{
S t r i n g name ;
Crab (P o s i t i o n p o s i t i o n) {

super (p o s i t i o n , 9 0) ;
}
Crab (P o s i t i o n p o s i t i o n , S t r i n g name) {

t h i s (p o s i t i o n) ;
t h i s . name = name ;

}
}

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

abstract methods

Suppose we add birds to our class hierarchy.

birds and crabs do not move the same way... there is no common
implementation for advance that we can put in Animals.

we could create an empty advance() in the Animal class and
override it in Bird and Crab.

Yet, another programer could add a new subclass and forget to
implement the advance() method.

Thus, we use abstract methods.

Definition

An abstract method is a method which has no implementation.

An abstract class is a class with abstract methods.

It is mandatory for all the non-abstract subclasses to override all the
abstract methods.

An abstract class cannot be instantiated.

Computer Science Introductory Course MSc - Introduction to Java

Inheritance

abs t rac t c l a s s Animal {
Po s i t i o n p o s i t i o n ;
double r o t a t i o n ;

abs t rac t vo id advance () ;

}

c l a s s Crab extends Animal{
S t r i n g name ;
vo id advance () {

/∗ crab moves ∗/
}

}

Animal a = new Animal () ; // COMPILATION ERROR
Crab c = new Crab () ; // Works !

Computer Science Introductory Course MSc - Introduction to Java

Encapsulation

Outline

1 References

2 Inheritance

3 Encapsulation

4 Polymorphism

5 Interfaces

6 Summary

Computer Science Introductory Course MSc - Introduction to Java

Encapsulation

Encapsulation

Definition

Encapsulation is the act of hiding properties and methods inside a class.

This allows to protect classes from unexpected side-effects from the
outside.

It also enforces implementation agnostic programming, which is a
good idea.

Computer Science Introductory Course MSc - Introduction to Java

Encapsulation

Packages

Definition

A package is a group of classes.

Packages define a namespace.

Classes in the same package share the same namespace.

package Animals ;
c l a s s Animal {}
c l a s s Crab {}

import Animals . Crab ;
import Animals . ∗ ;
c l a s s MyProgram{}

Computer Science Introductory Course MSc - Introduction to Java

Encapsulation

Acces modifiers

In java encapsultation is obtained through acces/visibility modifiers.

Classes can be public, visible by everyone
or without modifier in which case they are only visible inside their
package (a group of classes).

Class members (variables and methods) can have 4 modifiers with
different degrees of visibility.

Modifier Class Package Subclass World
public Y Y Y Y

protected Y Y Y N
no modifier Y Y N N

private Y N N N

Computer Science Introductory Course MSc - Introduction to Java

Encapsulation

packages an ima l s ;
c l a s s Animal {

p r i v a t e double r o t a t i o n ;
pub l i c vo id t u rn (double ang l e)
{ p o s i t i o n += ang l e ;}

}
c l a s s Crab extends Animal {

pub l i c vo id turnBack () {
t u rn (1 8 0) ; // l e g a l
r o t a t i o n += 180 ; // i l l e g a l

}
}

Computer Science Introductory Course MSc - Introduction to Java

Polymorphism

Outline

1 References

2 Inheritance

3 Encapsulation

4 Polymorphism

5 Interfaces

6 Summary

Computer Science Introductory Course MSc - Introduction to Java

Polymorphism

Q : How to make a group of animals advance ?

We want to make a group of animals (crabs and turtles) advance at
the same time.
We need a container for all of them, what is the container type ?

Nightmare

i n t numberCrabs ; i n t numberTur t l e s ;
Crab [] c r ab s ;
Tu r t l e [] t u r t l e s ;

moveAl lAn imal s () {
f o r (i n t i =0; i < numberCrabs ; i++)

c r ab s [i] . advance () ;
f o r (i n t i =0; i < numberTur t l e s ; i++)

t u r t l e s [i] . advance () ;
}
vo id addCrab (Crab c) { c r ab s [numberCrabs++]=c ;}
vo id addTur t l e (Tu r t l e t)
{ t u r t l e s [numberTur t l e s++]=t ;}

addCrab (new Crab ()) ;
addTur t l e (new Tu r t l e ()) ;

Computer Science Introductory Course MSc - Introduction to Java

Polymorphism

Polymorphism

Use Polymorphism, or the capacity to treat an instance as one of its
super classes

i n t numberAnimals ;
Animal [] an ima l s ;
vo id moveAl lAn imal s (){

f o r (i n t i =0; i < numberAnimals ; i++)
an ima l s [i] . advance () ;

}
vo id addAnimal (Animal a)
{ an ima l s [numberAnimals++] = a ;}

addAnimal (new Crab ()) ;
addAnimal (new Tu r t l e ()) ;

Better

Computer Science Introductory Course MSc - Introduction to Java

Polymorphism

Dynamic and Static type : Casts

Animal an ima l ;
an ima l = new Crab () ;

static type Animal

dynamic type Crab

when calling an instance method the dynamic type is used.

when calling a static method the static type is used.

you can force the static type (only to super-classes of the dynamic
type, or to the dynamic type) using casts :

Crab c = (Crab) an ima l ; // OK
Tu r t l e t = (Tu r t l e) an ima l ; // Runtime ERROR

Computer Science Introductory Course MSc - Introduction to Java

Polymorphism

Dynamic dispatching

When you call an instance method, the method used is the one
provided by the dynamic class, this is called dynamic dispatching.

It is the really powerful idea behind polymorphism :

You can treat a group of objects the same way
When you do an operation on one of the objects, the adequate
operation will be chosen depending on the dynamic type of the
object.

Computer Science Introductory Course MSc - Introduction to Java

Interfaces

Outline

1 References

2 Inheritance

3 Encapsulation

4 Polymorphism

5 Interfaces

6 Summary

Computer Science Introductory Course MSc - Introduction to Java

Interfaces

Multiple inheritance ?

We have added further classes to our animal class hierarchy :
Swimming with method swim(), Walking with method walk().

As our turtle can both swim and walk we would like it to inherit
from both classes.

But in java this is forbidden.

Computer Science Introductory Course MSc - Introduction to Java

Interfaces

Multiple inheritance : problem

class A

A.doIt();

class B1

override: B1.doIt();

class B2

override: B2.doIt();

class C

doIt() ?

When we call doIt() on C, do we call B1 or B2 implementation ?
Multiple answers to this problem (see for example Eiffel’s nice solution),
Java Answer : Interfaces.

Computer Science Introductory Course MSc - Introduction to Java

Interfaces

Interfaces

Definition

An interface is a behavioural contract that a class decides to honor.

Concretely, an interface is a collection of method signatures.

If a class implements an interface, it has to provide a body for each
of those methods.

A class can implement multiple interfaces.

An interface can extend another (single) interface.

Q : Why does it solves the multiple inheritance problem ? A : We multiply
interface, we do not multiply implementation...

Computer Science Introductory Course MSc - Introduction to Java

Interfaces

Multiple inheritance with interfaces

interface A

doIt();

interface B1

doIt();

extends

interface B2

doIt();

extends

class C

C.doIt()

implementsimplements

B2 and B1 asked for a method doIt, C provides it, no ambiguity

Computer Science Introductory Course MSc - Introduction to Java

Interfaces

pub l i c i n t e r f a c e Swimming {
vo id swim () ;

}
pub l i c i n t e r f a c e Walking {

vo id walk () ;
}
c l a s s Tu r t l e extends Animal

implements Swimming , Walking{
vo id swim () { /∗ swim implementation ∗/}
vo id walk () { /∗ walk implementation ∗/}

}

Computer Science Introductory Course MSc - Introduction to Java

Summary

Summary

To factorize code, creating classes hierarchies is important.

Each class should hide its implementation to make code robust and
maintainable.

With polymorphism one can design elegant, factorised code.

When an object implements different behaviours, one should use
interfaces.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

	References
	Inheritance
	Encapsulation
	Polymorphism
	Interfaces
	Summary

