Computer Science Introductory Course MSC - Software engineering

Computer Science Introductory Course MSC -

Software engineering
Lecture 5: Testing

Pablo Oliveira <pablo@sifflez.org>

ENST



Computer Science Introductory Course MSC - Software engineering

Outline

Introduction

What to test?

Types of tests

A Automated testing



Computer Science Introductory Course MSC - Software engineering

L Introduction

Introduction

m Verification and Validation :
m Validation ensures that the software fulfills the requirements.
m Verification ensures that the software meets the specification, three
approaches :
m Prove correctness by formal verification : costly, do not prevent from
bugs in the specification.

m Code inspection by peer reviews.
m Testing.



Computer Science Introductory Course MSC - Software engineering
L What to test?

What to test?

m Running the program on all possible inputs is impossible for complex
problems :

m exploration space might be insanely large (or worse infinite)
m Test on a subset of inputs :

m Partition inputs in significant classes maximizing the coverage of all
the possible cases.
m To do this choose particular inputs for your tests :
B inputs that tests all the control branches of your code
m boundary cases (detect overflow and off by one bugs)
m duplicate, null or invalid inputs.



Computer Science Introductory Course MSC - Software engineering

L What to test?

Example of partitionning (1/2)

specification:
int compare (int a, int b);

The function compare returns:
0 if a is equal than b
1 if a is strictly superior to b
-1 if a is strictly inferior to b

Q : What inputs would you test?



Computer Science Introductory Course MSC - Software engineering
L What to test?

Example of partitionning (2/2)

int compare (int a, int b) {
int ¢ = a-b;
if (¢ == 0) return 0;
else if (c<0) return -1;
else return 1;

}



Computer Science Introductory Course MSC - Software engineering
L What to test?

Example of partitionning (2/2)

int compare (int a, int b) {
int ¢ = a-b;
if (¢ == 0) return 0;
else if (c<0) return -1;
else return 1;

}

System.out.println(compare(10,10)); -> 0
System.out.println(compare(10,5)); > 1
System.out.println(compare(-10,-5)); -> -1

System.out.println(compare(-2147483648,1)); -> 1



Computer Science Introductory Course MSC - Software engineering

LTypes of tests

Black box and White box testing

Black box testing
m Generate test cases from the specification only.
m Do not make the same assumptions than the programmer.
m Tests are independent of the implementation.
White box testing
m Generate test cases from the source code.

m Improves coverage : we know the different control paths in the code.



Computer Science Introductory Course MSC - Software engineering

LTypes of tests

Unit tests

A unit is the smallest testable part of an application.
Test a single functionality in the code.
Usually tests a single method.

Unit tests allow to isolate the parts of the system and show they are
correct.

Most useful during the implemenation phase.



Computer Science Introductory Course MSC - Software engineering

LTypes of tests

Functional tests

m Functional tests verify the program as a whole.

m Centered in functionality which may be distributed among many
classes and functions.

m Important during the integration phase.



Computer Science Introductory Course MSC - Software engineering

LTypes of tests

Regressions tests

m Each time a bug is detected, a test that catches it must be written.

m If later on code is changed, the test ensures that if the bug appears
again, it will be catched.



Computer Science Introductory Course MSC - Software engineering

L Automated testing

JUnit

m Allows automazing tests
m Helps during regression testing.

m http://www.junit.org/



Computer Science Introductory Course MSC - Software engineering

L Automated testing

Example(1/2)

import junit.framework.x;

public class TestCompare extends TestCase {
CompareClass comp;
protected void setUp() {
comp = new CompareClass();
}
public void testPositive() {
int compare = CompareClass.compare(10,5);
assertEquals(compare, 1);
}
public void testBoundaries() {
int compare = CompareClass.compare(-2147483648,1);
assertEquals(compare, -1);
}
}



Computer Science Introductory Course MSC - Software engineering

L Automated testing

Example(2/2)

$ javac -cp junit-4.5.jar:
$ java -cp junit-4.5.jar
..F

Time: 0,003
There was 1 failure:
testBoundaries(TestIt) junit.framework.AssertionFailedError: expected:<1> but was:<-1>

1)
at
at

TestCOmpare
sun.reflect

sun.reflect

TestCompare. java

junit.textui.TestRunner TestCompare

.testBoundaries(TestIt.java:11)
.NativeMethodAccessorImpl.invokeO(Native Method)
sun.reflect.

NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39)

.DelegatingMethodAccessorImpl.invoke (DelegatingMethodAccessorImpl. java:25)

Failures: 1, Errors: 0



Computer Science Introductory Course MSC - Software engineering

- Automated testing

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. @



	Introduction
	What to test ?
	Types of tests
	Automated testing

