Contrôle Continu - Architecture des Ordinateurs

Vendredi 1er Avril 2011
Documents de cours autorisés. Calculatrices interdites.
Durée 1h25

Tous les résultats doivent être justifiés.

1 Représentations des entiers

1. Convertissez en hexadécimal les entiers suivants : 48_{10}, 62_{10}, 221_{10}.

Solution:
- $48 = 16 + 3 = 30_{16}$
- $62 = 32 + 16 + 14 = 3 * 16 + 14 = 3E_{16}$
- $221 = 128 + 64 + 16 + 13 = (8 + 4 + 1) * 16 + 13 = DD_{16}$

2. Représentez les entiers suivants au format binaire en complément à 2 sur 8 bits : 33_{10}, -20_{10}, 74_{10}, -63_{10}.

Solution:
- $33 = 0010001_{2}$
- $20 = 00010100_{2}$ donc $-20 = 00010100 + 1 = 11101011 + 1 = 11101100_{CA2}$
- $74 = 01001110_{2}$
- $63 = 64 - 1 = 00111110_{2}$ donc $-63 = 11000000 + 1 = 11000001_{CA2}$

Solution:
- 11000001
- $+11101100$
- \[\begin{array}{c}
110101101 \\
\text{Résultat} = 10101101 = -83
\end{array}\]

2 Codes

On souhaite transmettre sur un canal un mot de 8 bits $A = a_7a_6...a_1a_0$. On utilise le code C suivant pour la transmission : $C(A) = AA = a_7a_6...a_1a_0a_7a_6...a_1a_0$. Par exemple $C(1001101) = 1000110110001101$.

1. Quelle est la distance de Hamming $d(C(240), C(170))$ entre $C(11110000)$ et $C(10101010)$?
Solution: 11110000 et 10101010 ont 4 bits de différence donc \(C(11110000) \) et \(C(10101010) \) ont 8 bits de différence. La distance de Hamming entre eux est de 8.

2. Quelle est la distance de Hamming du code \(C \)? Pour rappel

\[
d_h(C) = \min\{d(C(M),C(N))|\forall M \neq N\}
\]

Solution: Soit deux mots différents de 8 bits \(M \) et \(N \). \(d(C(M),C(N)) = 2 \times d(M,N) \). La distance minimale entre \(M \) et \(N \) est 1 donc \(d_h(C) = \min\{d(C(M),C(N))|\forall M \neq N\} = \min\{2.d(M,N)|\forall M \neq N\} = 2 \).

3 Nombres flottants

On représentera les réels sur 16 bits selon la norme suivante (demi précision):

<table>
<thead>
<tr>
<th>S (Signe)</th>
<th>E (Exposant)</th>
<th>P (Pseudomantisse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>5 bits</td>
<td>10 bits</td>
</tr>
</tbody>
</table>

1. Représentez en demi-précision les réels suivants (on utilisera l’arrondi au plus près si nécessaire):

\(3 \)

\(0.8 \)

\(-0.625 \)

Solution:

\(3 = 0 \ 10000 \ 1000000000 \)

— Signe : positif.

— \(3 = 112 = 1,1.2^1 \)

— Pseudo-mantisse : 10000…

— Exposant : \(15 + 1 = 16 = 10000 \)

\(0.8 = 0 \ 01110 \ 1001100110 \)

— Signe : positif.

— Par multiplication par 2 successive :

\(.8 \times 2 = 1.6 \ 1 \)

\(.6 \times 2 = 1.2 \ 1 \)

\(.2 \times 2 = 0.4 \ 0 \)

\(.4 \times 2 = 0.8 \ 0 \)

\(\ldots \)

\(0.8 = 0.11001100 \ldots \times 2^{-1} \times 1.1001100110 \ldots \)

— Pseudo-mantisse : 10011001100

— Exposant : \(15 - 1 = 14 = 01110 \)

\(-0.625 = 1 \ 01110 \ 010000000 \)

— Signe : négatif.

— \(0.625 = 0.5 + 0.125 = 0.101 = 1.01 \times 2^{-1} \)

— Pseudo-mantisse : 010000000

— Exposant : \(15 - 1 = 14 = 01110 \)

2. En partant de leur représentation binaire, effectuez la somme des réels 0.8 et 3 et donnez le résultat en binaire sur 16 bits (en utilisant l’arrondi au plus près, si nécessaire). Détaillez les opérations effectuées.
Solution:
0.8 = 0 01110 1001100110
3 = 0 10000 1000000000

Il faut mettre les deux nombres sous le même exposant (2^-1).
0.8 = 1.1001100110 . 2^-1 = 0.011001100110 . 2^-1

+ 1.100000000000

1.111001100110

1.1110011010 (en arrondi au plus près)

Le résultat est normalisé, et s’écrit: 0 10000 1110011010

3. En partant de leur représentation binaire, effectuez le produit des réels -3 et 0.625 et donnez le résultat en binaire sur 16 bits (en utilisant l’arrondi au plus près, si nécessaire). Détailliez les opérations effectuées.

Solution:
-0.625 = 1 01110 0100000000
3 = 0 10000 1000000000
Signe du résultat: négatif

Additionne les exposants : 1 + (-1) = 0 / 15 + 0 = 15 = 01111

Multiplie les mantisses:
1.01
* 1.1

101
101

1.111000000....

Le résultat s’écrit donc: 1 01111 1110000000

4 Algèbre de Boole

Simplifier les fonctions suivantes en détaillant les étapes :
1. \(f_1(A, B, C, D) = (A + B + C + D) + (\overline{A}.B.C.D) \)
2. \(f_2(A, B, C, D) = A.D + A.C.D + \overline{A}.C.D + \overline{A}.B.C.D \)
3. \(f_3(A, B, C) = A.B.C + A.B.\overline{C} + A.B.C \)
4. \(f_4(A, B, C) = A.B + A.\overline{C} + B.C \)
5 Tables de Karnaugh

(Ci dessous, on notera \(m \) les minterms et \(d \) les "don’t care")

1. En utilisant une table de Karnaugh donnez une forme disjonctive (somme de produits) minimale de \(f(a, b, c, d) = \Sigma m(0, 1, 2, 3, 8, 10) \) ?

Solution: \(f = a.b + b.d \)

2. En utilisant une table de Karnaugh donnez une forme conjonctive (produit de sommes) minimale de \(g(a, b, c, d) = \Sigma m(1, 5, 9, 13, 15) + \Sigma d(2, 3, 10) \) ?

Solution: On pose \(\overline{g} = \Sigma m(0, 4, 6, 7, 8, 11, 12, 14) + \Sigma d(2, 3, 10) \).

\(\overline{g} = \overline{d} + c.\overline{b} \)
Donc $g = d(\overline{c} + a)(\overline{c} + b)$.

3. Proposer un circuit pour la fonction f qui n’utilise que des portes NOR.

Solution:

$$f = \overline{a + b + \overline{b} + d}$$