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Abstract

Characterizing performance is essential to optimize programs and ar-
chitectures. The open source Adaptive Sampling Kit (ASK) measures the
performance trade-off in large design spaces. Exhaustively sampling all
sets of parameters is computationally intractable. Therefore, ASK con-
centrates exploration in the most irregular regions of the design space
through multiple adaptive sampling strategies. The paper presents the
ASK architecture and a set of adaptive sampling strategies, including a
new approach: Hierarchical Variance Sampling. ASK’s usage is demon-
strated on three performance characterization problems: memory stride
accesses, jacobian stencil code and an industrial seismic application using
3D stencils. ASK builds accurate models of performance with a small
number of measures. It considerably reduces the cost of performance ex-
ploration. For instance, the jacobian stencil code design space, which has
more than 31 × 108 combinations of parameters, is accurately predicted
using only 1 500 combinations.

1 Introduction

Understanding architecture behavior is crucial to tune applications and develop
more efficient hardware. An accurate performance model captures all interac-
tions among the system’s elements such as: multiple cores with an out-of-order
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dispatch or complex memory hierarchies. Building analytical models is increas-
ingly difficult with the complexity growth of current architectures.

An alternative approach considers the architecture as a black box and em-
pirically measures its performance response. The downside of the approach is
the exploration time needed to sample the design space. As the number of con-
sidered factors grows – cache levels, problem size, number of threads, thread
mappings, and access patterns – the size of the design space explodes and ex-
haustively measuring each combination of factors becomes infeasible.

To mitigate the problem, we must sample only a limited number of combi-
nations, which we will call points in the following. From the sampled points, we
build a surrogate performance model to study, predict, and improve architecture
and application performance within the design space. Samples should be cho-
sen with care to faithfully represent the whole design space. A good sampling
strategy should capture the performance accurately with the minimal number
of samples.

The two fundamental elements of a sampling pipeline are the sampling strat-
egy and the surrogate model.

1. The sampling strategy decides what combinations of the design space
should be explored.

2. The surrogate model extrapolates from the sampled combinations a pre-
diction on the full design space.

The Adaptive Sampling Kit (ASK) gathers many state-of-the-art sampling
strategies and surrogate models in a common framework simplifying the process.
The user provides ASK with a description of the design space parameters. Then,
ASK automatically selects the points that should be sampled, measure their
response, and returns a model that predicts the performance of any given set of
parameters. Therefore, with a small set of measurements ASK can produce an
accurate performance map of the full design space.

Choosing an adequate sampling strategy is not simple: for best results one
must carefully consider the interaction between the sampling strategy and the
surrogate model [1]. Many implementations of sampling strategies are available,
but they all use different configurations and interfaces. Therefore, building and
refining sampling strategies is difficult. ASK addresses this problem by providing
a common interface to these different strategies and models. Designed around
a modular architecture, ASK facilitates building complex sampling pipelines.
ASK also provides reporting and model validation modules to assess the quality
of the sampling and ease the experimental setup exploration for performance
characterization. The paper’s main contributions are:

• a common toolbox, ASK, gathering state-of-the-art sampling strategies,
and simple to integrate with existing measurement tools,

• a new sampling strategy, Hierarchical Variance Sampling (HVS), which
mitigates sampling bias by using confidence bounds,
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• an evaluation of the framework, and of HVS, on three representative per-
formance characterization experiments.

Section 2 discusses related work. Section 3 succinctly presents ASK’s archi-
tecture and usage. Section 4 explains the HVS strategy. Section 5 details the
interaction between HVS sampling strategy and the Generalized Boosted Model
(GBM). Section 6 evaluates ASK on two performance studies: memory stride
accesses and 2D stencils. Finally, section 7 presents a performance case study
based on ASK of a seismic simulator kernel extracted from an industrial code.

This paper is an extended version of the work presented at the 18th Euro-Par
international conference [2].

2 Related Work

There are two kinds of sampling strategies: space filling designs and adaptive
sampling. Space filling designs select a fixed number of samples with sensible
statistical properties such as uniformly covering the space or avoiding clusters.
For instance, Latin Hyper Cube designs [3] are built by dividing each dimension
into equal sized intervals. Points are selected so the projection of the design on
any dimension contains exactly one sample per interval. Maximin designs [4]
maximize the minimum distance between any pair of samples; therefore spread-
ing the samples over the entire experimental space. Finally, low discrepancy
sequences [5] choose samples with low discrepancy: given an arbitrary region of
the design space, the number of samples inside this region is almost proportional
to the region’s size. By construction, the sequences uniformly distribute points
in space. These designs are often better than Random Sampling, which may
clump samples together [6].

Space filling designs choose all points in one single draw before starting
the experiment. Instead, adaptive sampling strategies iteratively adjust the
sampling grid to the complexity of the design space. By observing already
measured samples, they identify the most irregular regions of the design space.
Further samples are drawn preferentially from the irregular regions, which are
harder to explore.

The definition of irregular regions varies depending on the sampling strategy.
Variance-reduction strategies focus the sampling in regions with high variance.
The rationale is: irregular regions require more measurements to be accurately
modeled. Query-by-Committee strategies build a committee of models trained
with different parameters and compare the committee’s predictions on all the
candidate samples. Selected samples are the ones where the committee’s models
disagree the most. Adaptive Multiple Additive Regression Trees (AMART) [7]
is a recent Query-by-Committee approach based on Generalized Boosted Models
(GBM) [8], it selects non-clustered samples with maximal disagreement. An-
other recent approach by Gramacy et al. [9] combines the Tree Gaussian Process
(TGP) [10] model with adaptive sampling strategies [11]. For an extensive re-
view of adaptive sampling strategies please refer to Settles [12].
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Figure 1: ASK pipeline

The Surrogate Modeling Toolbox (SUMO) [13] offers a Matlab toolbox build-
ing surrogate models for computer experiments. SUMO’s execution flow is sim-
ilar to ASK’s: both allow configuring the model and sampling strategy to fully
automate an experiment plan. SUMO focuses mainly on building and control-
ling surrogate models, offering a large set of models. It contains algorithms for
optimizing model parameters, validating the models, and helping users choose
a model. A recent approach, LOLA-Voronoi, is included, which finds trade-offs
between uniformly exploring the space and concentrating on nonlinear regions
of the space [14]. SUMO is open source but restricted to academic use and
depends on the proprietary Matlab toolbox.

ASK specifically targets adaptive sampling for performance characterization,
unlike SUMO. It includes recent state-of-the-art approaches that were success-
fully applied to computer experiments [9] and performance characterization [7].
Simpson et al. [1] show one must consider different trade-offs when choosing a
sampling strategy: affinity with the surrogate model or studied response, ac-
curacy, or cost of predicting new samples. Therefore, ASK comes with a large
set of approaches to cover different sampling scenarios including Latin Hyper
Cube designs, Maximin designs, Low discrepancy designs, AMART, and TGP.
Additionally, ASK includes a new approach, Hierarchical Variance Sampling
(HVS).

3 ASK Architecture

ASK’s flexibility and extensibility come from its modular architecture. When
running an experiment, ASK follows the pipeline presented in Figure 1:

1. A bootstrap module selects an initial batch of points. ASK provides stan-
dard bootstrap modules for the space filling designs described in Section 2:
Latin Hyper Cube, Low Discrepancy, Maximin, and Random.

2. A source module, usually provided by the user, receives a list of requested
points. The source module computes the actual measurements for the
requested factors and returns the response.
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3. A model module builds a surrogate model for the experiment on the
sampled points. Currently ASK provides CART [15], GBM [8, 16], and
TGP [9] models.

4. A sampler module iteratively selects a new set of points to measure. Some
sampler modules are simple and do not depend on the surrogate model.
For instance, the random sampler selects a random combination of factors
and the latin sampler iteratively augments an initial Latin Hyper Cube
design. Other sampler modules are more complex and base their decisions
on the surrogate model.

5. A control module decides when the sampling process ends. ASK includes
two basic strategies: stopping when it has sampled a predefined amount
of points or stopping when the accuracy improvement stays under a given
threshold for a number of iterations.

From the user perspective, setting up an ASK experiment is a three-step
process. First, the range and type of each factor is described by writing an
experiment configuration file in the JavaScript Object Notation (JSON) for-
mat. ASK accepts real, integer, or categorical factors. Then, users write a
source wrapper around their measuring setup. The interface is straightforward:
the wrapper receives a combination of factors to measure and returns their re-
sponse. Finally, users choose which bootstrap, model, sampler, control, and
reporter modules to execute. Module configuration is also done through the
configuration file. ASK provides fallback default values if parameters are omit-
ted from the configuration. An excerpt of a configuration with two factors and
the hierarchical sampler module follows:

"factors": [{"name": "image-size",

"type": "integer",

"range": {"min": 0, "max": 600}},

{"name": "stencil-size",

"type": "categorical",

"values": ["small", "medium", "large"]}],

"modules": {"sampler": {"executable": "sampler/HVS",

"params": {"nsamples":50}}}

Editing the configuration file quickly replaces any part of the ASK experiment
pipeline with a different module. For example, by replacing sampler/HVS with
sampler/latin the user replays the same experiment with the same param-
eters but using a Latin Hyper Cube sampler instead of Hierarchical Variance
Sampling. All the modules have clearly defined interfaces and are organized to
follow the separation of concerns principle [17]. This organization allows the
user to quickly integrate custom made modules to the ASK pipeline.
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Figure 2: HVS on a synthetic 1D benchmark after fifteen drawings of ten sam-
ples each. The true response, f(x) = x5|sin(6.π.x)|, is the solid line. CART
partitions the factor dimension into intervals, represented by the boxes horizon-
tal extension. For each interval, the estimated standard deviation, s, is in a
light color and the upper bound of the standard deviation, σub, is dark. HVS
selects more samples in the irregular regions.

4 Hierarchical Variance Sampling

Many adaptive learning strategies are susceptible to bias because the sampler
makes incorrect decisions based on an incomplete view of the design space. For
instance, the sampler may ignore a region although it contains big variations
because previous samplings missed the variations.

To mitigate the problem, ASK includes the new Hierarchical Variance Sam-
pling, HVS. The key idea of HVS is to reduce the bias using confidence intervals
that correct the variance estimation. HVS partitions the exploration space into
regions and measures the variance of each region. A statistical correction de-
pending on the number of samples is applied to obtain an upper bound of the
variance. Further samples are then selected proportionally to the upper bound
and size of each region. By using a confidence upper bound on the variance, the
sampler is less greedy in its exploration and is less likely to overlook interesting
regions. In others words, the sampler is less likely to ignore a region until the
number of sampled points is enough to confidently decide the region has low
variance.
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HVS is similar to Dasgupta et al. [18] proposing a hierarchical approach for
classification tasks using confidence bounds to reduce the sampling bias. The
Dasgupta et al. approach is only applicable to classification tasks with a binary
or discrete response. Because ASK models performance, which is continuous
response, we could not directly use the Dasgupta et al. approach, and instead
developed HVS.

To divide the design space into regions, HVS uses the Classification and
Regression Trees (CART) partition algorithm [15] with the Analysis of Variance
(ANOVA) splitting criteria [19] and prunes the tree to optimize cross validation
error. At each step, the space is divided into two regions so the sum of the
regions variance is smaller than the variance of the whole space. The result of
a CART partitioning is shown in Figure 2 where each box depicts a region.

After partitioning, HVS samples the most problematic regions and ignores
the ones with low variance. The sampler only knows the empiric variance s2

that depends on previous sampling decisions; to reduce bias HVS derives an
upper bound of the true variance σ2. Assuming a close to normal region’s
distribution, HVS computes an upper bound of the true variance σ2 satisfying

σ2 < (n−1)s2

χ2
1−α/2,n−1

= σ2
ub with a 1 − α confidence1. To reduce the bias HVS uses

the corrected upper bound accounting for the number of samples drawn. The
variance upper bound computation assumes an underlying normal distribution
per region, which may not be the case. We believe HVS could be improved by
using a more accurate variance upper bound.

For each region, Figure 2 plots the estimated standard deviation s, light
colored, and upper-bound σub, dark colored. As shown in Figure 2, samples
are selected proportionally to the variance upper bound multiplied by the size
of the region. New samples, marked as triangles, are chosen inside the largest
boxes. HVS selects few samples in the [0, 0.5] region, which has a flat profile.

If the goal of the sampling is to reduce the absolute error of the model, then
the HVS strategy is adequate because it concentrates on high-variance regions.
On the other hand, if the goal is to reduce the relative error2 of the model, it

is better to concentrate on regions with high relative variance, s2

x2 . HVSrelative
is an alternate version of HVS using relative variance with an appropriate con-
fidence interval [20]. Section 6 evaluates the HVS and HVSrelative sampling in
two performance studies. Section 7 uses HVS to explore the performance of a
seismic imaging application.

5 GBM Model and HVS Sampler Interactions

Fitting a model is a trade-off between the model complexity and the accuracy.
When tuning the model, it is important to take into account the design space
and the sampling strategies. In this section we study the interactions between
the GBM model, used extensively in our experiments in sections 6 and 7, and

11 − α = 0.9 confidence bound is default. χ is the Chi distribution.
2sometimes called percentage error
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the HVS sampler.
Traditional regression trees approaches, such as CART [15], partition the

design space into regions and fit a constant or linear model to each region.
The partitioning is represented by a tree where each leaf corresponds to one
of the regions in the partitioning. GBM improves over CART by combining
the predictive power of many individual trees. GBM models the response as a
function f(~x) where ~x is the input vector of factors. The function f is defined
as a linear combination of regression trees. Each regression tree models the
interactions among a subset of factors.

GBM improves the accuracy of f by minimizing a loss function, such as
1
n

∑n
i=1(yi − f(~xi))

2, which computes for every point i, the mean squared error
between the measured response yi and the prediction f(~xi). This formulation
implies that every ~xi has the same effect on the final model. Therefore, if the
space is not uniformly explored, regions with few samples will be underrepre-
sented in the loss function.

Because adaptive sampling strategies sample unequally the space, they affect
GBM’s loss function computation. Consider, for instance, the synthetic 1D
response defined by the following piece-wise function:

∀x ∈ [1 : 100] s(x) =


1 if 0 < x ≤ 20 (region R1)

x− 20 if 20 < x ≤ 40 (region R2)

20 if 40 < x ≤ 100 (region R3)

An adaptive strategy such as HVS will sample few points from the R1 and R3

regions because they are flat. Figure 3 presents a sampling experiment where
the region R2 is sampled ten times more than the other two regions. Since
GBM’s loss function is dominated by R2, the model is trained specifically for
the middle region at the expense of accuracy in R1 and R3. In figure 3 the
model, labelled unweighted, clearly shows a lack of accuracy in the first and
third regions.

To avoid this effect, ASK takes advantage of the GBM weights feature [8],
which replaces the above loss function by

∑n
i=1 wi.(yi − f(~xi))

2 where wi is
the weight of point i. To remove the sampling bias introduced by the adaptive
strategy we set all weights in region r to wr = sr

nr
, where sr is the proportion of

the total design space occupied by region r and nr is the proportion of samples in
region r. In the unweighted formula, the importance of a region is proportional
to the number of samples it received, nr. With the weighted formula, this value
is multiplied by the region weight, nr.wr = nr.

sr
nr

= sr. This ensures that the
importance of a region is proportional only to its size but is independent of the
number of samples it received.

Figure 3 compares on the synthetic example the true response to the weighted
and unweighted GBM models using 5000 trees. As expected, the weighted GBM
model fits better the first and third regions.
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6 Experimental Study

In this section, we present two performance characterization experiments con-
ducted using ASK.

The first experiment examines the performance of a synthetic microbench-
mark called ai aik. Ai aik explores the impact of strided accesses to a same
array inside a loop. The design space comprises 400 000 different combinations
of two factors: loop trip N and k-stride. The design space is large and variable
enough to challenge sampling strategies. Nonetheless, it is small enough to be
measured exhaustively providing an exact baseline to rate the effectiveness of
the sampling strategies.

The second experiment validates the strategies on a large experimental space:
performance of 2D cross-shaped stencils of varying size on a parallel SMP. A wide
range of scientific applications use stencils: for instance, Jacobi computation [21,
22] uses a 2 × 2 stencil and high-order finite-difference calculations [23] use a
6× 6 stencil.

The design space is composed of five parameters: the N ×M size of the
matrix, the X × Y size of the stencil, and T the number of concurrent threads
used. The design space size has more than 7 × 108 points in a 8-core system
and more than 31× 108 points in a 32-core system.

Since an exhaustive measurement is computationally infeasible, the predic-
tion accuracy is evaluated by computing the error of each strategy on a test set
of 25 600 points independently measured. The test set contains 12 800 points
chosen randomly and 12 800 points distributed in a regular grid configuration
over the design space. Measuring the test set takes more than twelve hours of
computation on a 32-core Nehalem machine.

All studied sampling strategies use random seeds, which can slightly change
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the predictive error achieved by different ASK runs. Therefore, the median
error, among nine different runs, is reported when comparing strategies.

Experiments ran with six of the sampling strategies included in ASK: AMART,
HVS, HVSrelative, Latin Hyper Cube, TGP, and Random. All the benchmarks
were compiled with ICC 12.0.0 version. The strategies were called with the
following set of default parameters on both experiments:

Samples All the strategies sampled in batches of fifty points per iteration.

Bootstrapping All the strategies were bootstrapped with samples from the
same Latin Hyper Cube design, except Random, which was bootstrapped
with a batch of random points.

Surrogate Model Tuning accurately the model parameters is important to
get accurate performance predictions. The TGP strategy uses the tgpllm
model with its default parameters and the adaptive sampling setup de-
scribed in section 3.6 of [10]. The other strategies used GBM [8] with the
following parameters:

• distribution: the loss function, described in section 5, was selected
to minimize squared error.

• shrinkage: this parameters sets the gradient descent step, which
controls the contribution of each new tree added to the model. It
was set to 0.01 as recommended in [8].

• ntrees: the maximum number of trees used in the model was set to
3 000.

• depth: the maximum depth of each tree was set to 8. This param-
eters controls the maximum number of interactions between factors.
For example, trees of depth one with only one cut, allow no interac-
tions between factors.

• minobsinnode: the minimum number of samples required to sprout
a tree leaf was set to 10, the default value.

Manually tuning model parameters is tedious and requires precise knowl-
edge of the model’s internals. Strategies to automatically explore and
optimize model parameters have been proposed [24, 13]. We plan to ex-
tend ASK with such strategies, to facilitate usage by non expert users.

AMART ran with a committee size of twenty as recommended by Li et al. [7].

TGP used the Active Learning-Cohn [11] sampling strategy.

HVS, HVSrelative used a confidence bound of 1− α = 0.9.

Section 6.1 validates ASK on an exhaustive stride access experiment. Section 6.2
validates ASK on a large design space that cannot be explored exhaustively:
multi-core performance of cross-shaped stencils.
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6.1 Stride Microbenchmark: ai aik

This section studies the stride memory accesses of the following ai aik kernel:

for(i=0;i<N*256;i++) {

res[i]=a[i]+a[i+2*k];

}

The baseline is an exhaustive measurement of cycle per element performance
on a Xeon L5609 quad-core 1.87GHz with 8GB of RAM. The measurements
revealed the four zones on the left side of Figure 4:

1. zone 1: the kernel is fastest because both i and i+ 2k accesses fit in L1.

2. zone 2: is a transition zone between zone 1 and zone 3, under the diag-
onal, the accessed array elements still fit in L1.

3. zone 3: accesses do not fit fully in L1 anymore but the performance is
still acceptable because the accesses i + 2k prefetch the data needed for
the i accesses in future iterations.

4. zone 4: performance is the worst because accesses do not fully fit in L1
and the 2k distance is too wide to reuse the data prefetched by the i+ 2k
accesses of the previous iterations.

The preceding exhaustive analysis required 400 000 measurements of the
ai aik kernel. ASK ran the same experiment with different sampling strategies
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stopping at only 500 samples. Each strategy’s accuracy was determined by
comparing its predictions to the exhaustive baseline.

Comparing the predicted and exhaustive responses in Figure 4 shows that
TGP and HVS capture the four zones in detail while AMART is less accurate
in Zone 2. The diagonal effect in Zone 2 introduces high variance. Therefore,
HVS concentrates sampling on Zone 2, capturing it accurately.

The Root Mean Square Error (RMSE) is the standard metric in the literature
to evaluate a model’s accuracy. Figure 4, right side, shows the RMSE of each
strategy. The strategies, except TGP, are comparable in terms of convergence
speed and reached accuracy. TGP scores a poor RMSE performance compared
to the other strategies. GBM surrogate model seems to be a better fit than
TGP for this experiment.

In the experiment, ASK’s 500 point sampling successfully captures the per-
formance features of the design space. ASK uses eight hundred times less sam-
ples than the exhaustive analysis (400 000 samples), while preserving accuracy.

6.2 2D Stencil Characterization

The stencil code characterization is infeasible with exhaustive exploration,
but is possible using ASK’s adaptive sampling strategies. In the studied stencil
code, Figure 5a, five factors can be tuned – X and Y ∈ {1, 2, 4, 8, 16} the hori-
zontal and vertical sizes of the stencil, N ∈ [64, 2048] the number of rows of the
matrix, M ∈ [64, 2048] the number of columns of the matrix, and T ∈ [1, 32] the
number of threads. The stencil was studied on two Nehalem architectures: an
8-core dual-socket Xeon E5620 at 2.40GHz with 24GB of RAM and a 32-core
four-socket Xeon X7550 at 2.00GHz with 128GB of RAM. The OpenMP map-
ping policy was set to Scatter. The error was evaluated on an independent
test set of 25 600 points.

TGP was not used during the second experiment because it does not handle
categorical variables [10]. The computation time needed to select samples with
HVS, HVSrelative, and Latin is negligible compared to the time required to
measure a batch of samples. AMART is a Query-by-Committee strategy, which
generates a prediction on all the candidate points, for twenty different models.
In the stencil experiment the number of candidate points is in the order of
billions, computing a prediction on all of them is not possible. Therefore, as
suggested by Gramacy [10], ASK’s AMART implementation reduces the number
of candidate points to one thousand with a Latin Hyper Cube presampling.

The sampling strategies’ accuracy is measured in terms of RMSE and mean
relative error, in Figure 5b. Here only the 32-core results are examined because
the sampling strategies’ accuracy was similar for both the 8 and 32-core archi-
tectures. For RMSE, HVS outperforms all other strategies both in quality of
the final model, 1.76 RMSE, and speed of convergence. For mean percentage
error, AMART achieves the best final result, 8.89%, followed closely by Latin,
Random, and HVSrelative. HVSrelative converges faster than the others.

Overall, HVSrelative is the best compromise between RMSE and percentage
error because it achieves low final errors and converges quickly to an accurate
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#pragma omp parallel for

for(i=Y; i<N-Y; i++)

for(j=X; j<M-X; j++) {

for(k=j-X; k<=j+X; k++)

out[i][j] += in[i][k];

for(l=i-Y; l<=i+Y; l++)

out[i][j] += in[l][j];

}

(a) Stencil code evaluated
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model. Using only eight hundred samples, HVSrelative predicts the test set
with a mean absolute error of 1.51 cycles and a mean relative error of 10.97%.

Figure 5c shows the performance prediction for HVS and HVSrelative on the
X×16 stencils. Each square represents a unique (X,Y, T ) configuration. Inside
each square the performance is plotted depending on the matrix size N ×M .
For example the outlined left-bottom square plots the performance predicted by
HVS for a 1× 16 stencil with one thread.

The kernel is slowest for high Y stencils whose column order accesses stress
the cache. In comparison, X stencil’s size impact on performance is negligible.
Performance degrades for large matrices, as shown from the darker top-right
corners of each square, probably because the matrices exceed the L2 cache
capacity. Therefore, choosing an adequate blocking factor should improve the
performance. On ASK HVS’ 32-core model the mean speed-up obtained by
varying the matrix size is 1.65. Using a small matrix with a high number of
threads is detrimental because the cost of synchronization predominates.

On both 8 and 32-core targets the stencil code scales linearly up to, respec-
tively, 8 and 32 threads. As an example, the scalability of the application was
studied on the 8 × 8 stencil on a 1 000 × 1 000 matrix. Figure 5d shows the
performance per number of threads predicted by the HVSrelative strategy. The
prediction follows the measured true response. The matrix sizes explored fit
into the socket’s 18Mb L3 cache, additionnaly the 2D stencil benefits from data
reuse, which explains the strong scaling.

Measuring the whole design space would take centuries whereas ASK adap-
tive sampling took less than an hour of experiment time with a 1.76 RMSE.
ASK is both efficient when dealing with small design spaces, as in ai aik, and
large design space, as in the stencil codes experiment.

7 Seismic Modeling Performance Study

In Sections 6, synthetic application kernels were used to validate ASK sampling
strategies. This section presents a performance study conducted using ASK
on a finite-difference time-domain (FDTD) kernel extracted from an industrial
seismic imaging code.

Section 7.1 presents the seismic application and the design parameters con-
sidered for FDTD. Section 7.2 details the steps to set up ASK and evaluates the
sampling accuracy. Finally, section 7.3 presents the performance characteristics
of the FDTD kernel captured by the performance model generated by ASK.

7.1 FDTD kernel presentation and design parameters

Industry relies on depth imaging applications to model the subsurface and thus
locate precisely oil and gas deposits. Reverse Time Migration (RTM) [25] is
a commonly used application as it represents a good compromise between the
quality of the image rendered and the time to solution. The first step in RTM
consists of building synthetic seismograms based on a model of the crust. This
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process is called the seismic modeling. The second step is a retro-propagation of
the waves recorded during exploration campaigns. These waves are the reflec-
tion of the vibrations sent in the earth. We adjust the seismic model using the
collected data in order to get the actual image of the subsurface. The accuracy
of the image depends on the numerical methods implemented in the applica-
tion. For geophysical imaging, one can solve numerically the wave equation
using three distinct approaches: spectral method, strong formulation, and weak
formulation [26].

The spectral method is based on a dual representation of the space and is
generally used on layered and simple geophysical structures. On the other hand,
finite-element methods based on the weak formulation are used on complex
structures of the earth but demand more computational resources. Here we
consider the strong formulation of the partial differential equation which offers
a good trade-off between the image accuracy and the computational cost.

Our study focuses on finite-difference time-domain (FDTD) implementations
in isotropic medium. The equation governing the wave propagation in such
medium is,

1

c2
∂2U

∂t2
= ∆U,

where U designates the wave field and c the velocity, constant in our case. In a
finite-difference approach, each value of the field is updated using a combination
of its neighboring values. Figure 7 shows the discretization of the wave equation.
The number of neighbors in each direction defines the order in space of the
stencil. Our implementation uses the centered explicit stencil shown in figure 6.
In the following, p denotes the half order of the stencil. For example, in figure
6, 2p is equal to 8 which corresponds to the order of the Taylor expansion in
each dimension of the space.

x

y
z

Figure 6: 3D centered
stencil of order 8 (p =
4).
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Figure 7: Discretization of the pressure field U us-
ing a stencil of order 2p in space and 2 in time. ∆t
and (∆x,∆y,∆z) designate discretization steps in
time and space respectively. bm are constant co-
efficients weighting neighboring values that are the
result of the Taylor expansion.

Performance optimization of stencil computations is widely studied by the
community [21]. Common optimizations target data locality through spatial
and temporal cache blocking, loop tiling and padding. Most of these optimiza-
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tions are machine dependent and need to be manually tuned, for instance by
selecting the best blocking size and padding width. Performance modeling helps
the tuning process by exploring the performance trade-offs in a large parameter
space.

We explore the following parameters in the FDTD implementation:

• the grid size (X,Y, Z) where each dimension is independently selected in
the range [768 : 1536] by steps of 128,

• the half stencil order p in [1 : 8],

• the number of threads in {4, 8, 16, 32},

• the number of blocks (NX,NY,NZ) respectively onX direction in {1, 2, 4, 8, 16},
Y and Z directions in {4, 16, 32, 64, 128},

• the variant of the algorithm. The first variant, isotropic, corresponds
to the code in algorithm 1. The second variant, isotropic-split, is the
same code after loop splitting.

The possible factor combinations amount to more than 2.7 million.

7.2 ASK experimental setup

To produce the results presented in section 7.3, we build a performance model of
the FDTD kernel using ASK. The target machine is the same Nehalem 32-core
four-socket Xeon X7550 at 2.00GHz with 128GB of RAM that was used in the
2D stencil experiment in section 6.2. Threads were distributed evenly among
sockets with KMP_AFFINITY=scatter.

Points are sampled in 16 batches of 50 points, using three different sampling
strategies: HVS, HVSrelative and Random. The surrogate model, GBM, was
manually tuned on a small set of points, before starting the full ASK experiment.
The selected GBM parameters, described in section 6, are: shrinkage=0.05,
ntrees=10 000, depth=9, minobsinnode=3.

In order to evaluate the error, we measure the real response of 3225 ran-
domly selected points, which represent more than 60 hours of experiments on
the 32-core machine. Since the test set is small compared to the design space,
confidence intervals of the prediction error are computed using 1000 ordinary
bootstrap iterations [27].

Figure 8 shows the RMSE and mean percentage error for the three sampling
strategies. The experiment is stopped after 16 sampling steps to show ASK
capability of building a performance model with a limited number of samples.
HVS RMSE error curve seems to be still progressing. The most accurate model
is built using HVS and GBM with a final mean error of 7.71% and an RMSE
error of 4.14. The difference between HVS and random sampling in this ex-
periment is small. Our intuition is that the design space has a high variability
and gives few optimization opportunities to HVS which benefits mostly from
flat regions. HVSrelative RMSE error is higher than the other methods. Since
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Figure 8: Root mean square error and Mean percentage error for the three tested
strategies in the FDTD case study. The error is evaluated against a randomly
selected test set of 3225 points. The vertical black lines show the bootstrap
confidence intervals.

HVSrelative optimizes for relative error, this result is not surprising. However,
HVSrelative does not show relative error improvement compared to the other
methods in this experiment.

A GBM performance model of the FDTD kernel is built using the HVS 800
points sampling. Next section, uses this model to study the interactions between
the different parameters of the FDTD kernel.

7.3 Performance characterization of stencil computation

The GBM model offers a useful feature that allows sorting the model factors
by their relative influence. Figure 9 shows the relative influence of the different
factors considered in our experiment. The relative influence is computed using
the method proposed by Friedman in [16] and determines how much a given
variable affects the response in the GBM model. Dominant factors of perfor-
mance are the order of the stencil, the code variant, number of blocks on X
and Y and the number of threads. Figure 9 gives an insight on the parameters
to consider in priority to enhance performance. The following paragraphs give
more details on the way these parameters affect performance. The metric used
is the number of cycles required per lattice update.

The Variant Influence We consider two variants of the FDTD implemen-
tation. The first variant, isotropic in algorithm 1 computes the Laplacian in
a triple nested loop. In the second variant, isotropic-split, the inner loop is
split into p smaller loops. Each split loop corresponds to one of the bp factored
blocks. Figure 10 shows that the number of cycles per update increases for both
variants as the stencil order increases. Yet, for high stencil orders with 2.p > 10,
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Algorithm 1 3D loop to update the wave equation U for the time step t+ 1.

for k ← Zmin,Zmax do
for j ← Y min, Y max do

for i← Xmin,Xmax do

Laplacian U = b0 ∗ Ut(i, j, k)

+ b1 ∗ {Ut(i− 1, j , k ) + Ut(i+ 1, j , k )

+ Ut(i , j − 1, k ) + Ut(i , j + 1, k )

+ Ut(i , j , k − 1) + Ut(i , j , k + 1)}
...

+ bp ∗ {Ut(i− p, j , k ) + Ut(i+ p, j , k )

+ Ut(i , j − p, k ) + Ut(i , j + p, k )

+ Ut(i , j , k − p) + Ut(i , j , k + p)}

Ut+1 = 2 Ut − Ut−1 + c2 ∆t2 Laplacian U

end for
end for

end for
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Figure 9: Relative influence of input factors in the FDTD kernel. The influence
determines how much a factor affects the response. For the GBM model, it is
computed as described in [16].
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the isotropic variant is significantly more costly than the isotropic-split

variant. The goal of loop splitting is to lower the register pressure and the
number of concurrent memory streams. It is particularly effective on large loop
bodies, such as the ones needed by high-order stencils.
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Figure 10: Performance of the isotropic and isotropic-split code variants.
For p larger than five, the isotropic-split version is significantly faster.

The Blocking Influence This section studies the impact of the spatial cache
blocking on performance in the isotropic-split variant with p = 4. Results
are similar for other configurations. Cache blocking aims to increase data lo-
cality by reusing data before eviction from the cache. The loop illustrated in
algorithm 1 can be blocked across the three dimensions.

Figure 11 illustrates the impact of blocking on the innermost dimension X.
The grid is tiled with blocks: increasing the number of blocks reduces each
block size. Performance deteriorates as the number of blocks on dimension X
increases. Indeed, for small block sizes on X, the hardware prefetcher streams
additional data, which are evicted from the cache before being used. Therefore,
using small X block sizes result in an increase of memory traffic. The number
of blocks in the X dimension should be kept low.

On the other hand, the outer Y and Z loops should be blocked to make the
data working set of all the threads fit the cache. Figure 12 shows the correlation
between the number of Y blocks and the number of threads. For high number
of threads, configurations with a high number of Y blocks are the best. All
the threads in the same socket share the same Last Level Cache (LLC). As the
number of threads increases, the cache budget per thread decreases requiring
smaller block sizes. Blocking across Z also helps, but the pay-off is smaller since
it exposes less data reuse. Similar conclusions can be found in other studies on
performance optimization of stencil computations such as [28, 29].
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Scalability This section studies the strong scalability of a stencil of order
8 (p = 4) with the best variant and blocking parameters determined in the
previous analysis. The selected parameters are isotropic-split, p = 4, NX =
1, NY = 128, and NZ = 32.

Figure 13 shows the scalability for two different grid sizes.
The kernel scales well up to 16 threads. ASK pinpoints a potential scala-

bility problem, at 32 threads the speedup is around 26. Since the results are
extrapolated from the model, we cross validate this result by direct measure-
ment. Despite some small local discrepancies, the model predicts the general
trend.

The model generated by ASK allowed us to tune the variant, the blocking
factor, and to detect a scalability problem. The analysis presented here reaches
similar conclusions to previous studies on stencil performance. Our results with
ASK show that adaptive sampling is a valid approach for real application per-
formance exploration.

8 Conclusion

Adaptive sampling techniques drastically reduce exploration time of large design
spaces. Nevertheless, choosing the right technique can be difficult for a perfor-
mance architect. ASK provides an homogeneous interface to multiple state-of-
the-art sampling strategies, making the process easier. Adding new strategies
to the framework is straightforward due to ASK’s modular architecture.
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Figure 13: Scalability for the isotropic-split implementation with half order
p = 4, NX = 1, NY = 128, and NZ = 32. The speedup is computed using the
single thread performance with the same parameters.

The new HVS strategy reduces experimental bias and is comparable with
other state-of-the-art approaches. It even outperforms them in two case studies.
The 2D stencil code design space, which has more than 31 × 108 points, was
accurately predicted using only 1 500 points.

ASK was used to characterize the performance of a finite-difference time-
domain kernel used in industrial seismic imaging applications. The produced
performance model identifies the parameters affecting performance and captures
the interaction between different factors. Such a model can be used to identify
performance problems, select among different code variants or blocking factors,
or tune an application for a given architecture.

Currently, users must try different models manually to find what is best
suited to their experiment. Tuning the model parameters can also be difficult
and time consuming for a non expert user. Automatic model and sampling
selection techniques [30] and automatic model tuning techniques [24, 13] applied
to performance experiments will be investigated in future work.

Our preliminary set of experiments shows that the performance characteriza-
tion field could benefit from adaptive sampling techniques. ASK is open source,
the last version is available at http://code.google.com/p/adaptive-sampling-kit.
The experimental data and benchmarks used to produce the paper results are
available at the same URL.
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