
Piecewise Holistic Autotuning of Compiler and
Runtime Parameters

Mihail Popov1, Chadi Akel2, William Jalby1, and Pablo de Oliveira Castro1

1 Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay
{mihail.popov,william.jalby,pablo.oliveira}@uvsq.fr

2 Exascale Computing Research chadi.akel@exascale-computing.eu

Abstract. Current architecture complexity requires fine tuning of com-
piler and runtime parameters to achieve full potential performance. Au-
totuning substantially improves default parameters in many scenarios
but it is a costly process requiring a long iterative evaluation.
We propose an automatic piecewise autotuner based on CERE (Codelet
Extractor and REplayer). CERE decomposes applications into small
pieces called codelets: each codelet maps to a loop or to an OpenMP
parallel region and can be replayed as a standalone program.
Codelet autotuning achieves better speedups at a lower tuning cost. By
grouping codelet invocations with the same performance behavior, CERE
reduces the number of loops or OpenMP regions to be evaluated. More-
over unlike whole-program tuning, CERE customizes the set of best pa-
rameters for each specific OpenMP region or loop.
We demonstrate CERE tuning of compiler optimizations, number of
threads and thread affinity on a NUMA architecture. On average over the
NAS 3.0 benchmarks, we achieve a speedup of 1.08× after tuning. Tun-
ing a single codelet is 13× cheaper than whole-program evaluation and
estimates the tuning impact on the original region with a 94.7% accu-
racy. On a Reverse Time Migration (RTM) proto-application we achieve
a 1.11× speedup with a 200× cheaper exploration.

1 Introduction

The current increase of architecture complexity, multiple cores, out-of-order exe-
cution, complex memory hierarchies, and non-uniform memory access (NUMA)
complicates the performance characterization. Achieving full efficiency requires
fine tuning parameters such as the degree of parallelism, thread placement or
compiler optimization. Runtime and compiler standard parameter levels (such
as -O3 compiler flag or scatter thread placement) achieve good-enough perfor-
mance across most of the codes and architectures. But they cannot take advan-
tage of target-specific optimizations since they must correctly work on a large
panel of architectures.

Finding the optimal parameters may lead to substantial improvement but is
a costly and time consuming process. For example, compilers such as LLVM [1]
3.4 provide more than sixty passes. Passes have different impact depending on

2

their order of execution and can be executed many times. This leads to a huge
exploration space: considering only sequences of 30 passes requires to explore a
space over 6030 points.

Even worse, some applications may have different optimal parameters for
different code regions. For example, compute bound loops and memory bound
loops within the same function will not be sensitive to the same compiler opti-
mizations.

There are different approaches to tune parameters. Iterative compilation [2]
is a well known automated search method for solving the compiler optimization
phase ordering problem. The idea is to apply successive compiler transformations
to a program and to evaluate them by executing the resulting code. Similar
execution driven studies [3, 4] explore the efficiency of different thread placement
strategies or frequencies. Smart search algorithms [5, 6] through the parameter
space reduce the evaluation cost. Genetic algorithms [7, 8] or adaptive learning [9,
10] accelerate the search by avoiding unnecessary parameters.

A common point of these execution driven studies is that they require a full
program evaluation and execution to quantify the impact of a single parameter
value. The problem is that executing application is costly and time consuming,
especially if we have thousands of points to evaluate. Also, as regions of code
do not benefit from the same parameters, an overall program-evaluation (or
monolithic evaluation) is not able to achieve the optimal per region optimization.
In other words, these studies are expensive to perform and do not necessary lead
to the optimal parameters.

In this paper we propose a piecewise exploration framework based on CERE [11]
(Codelet Extractor and REplayer) which enhance both the search cost and the
search benefits. We partition applications into small pieces called codelets. Each
independent loop or OpenMP parallel region is extracted as a codelet that can
be replayed as a standalone program. Instead of evaluating parameters on the
whole application, we separately evaluate them on each codelet (section 3.2). The
piecewise evaluation leads to find the best parameters for each region. Combin-
ing these regions within a single binary is called hybridization and outperforms
traditional monolithic tuning (section 3.3).

Using codelets as proxies for autotuning requires that codelets faithfully re-
produce the application behavior with the exploring parameters. This requires a
warmup of the memory state. CERE already implements various warmup strate-
gies. To enable thread placement exploration, we extend these warmups with a
new NUMA ownership strategy (section 3.1).

The contributions of this paper are:

– A novel automatic autotuner based on codelets and integrated in CERE.

– A holistic piecewise tuning approach that addresses degree of parallelism,
thread placement, NUMA effects, and compiler optimization passes.

– The validation of the codelet tuning over the NAS benchmarks and an in-
dustrial proto-application with compiler and runtime parameters.

– A NUMA aware memory page capture and replay.

3

2 Motivating Example

thread affinity xsolve ysolve zsolve rhs total

s2 0;8 32.3 23 28.5 23 106.8
c2 0;1 21.4 17.6 18.1 23.7 80.8
h2 0;16 40 32.6 23 46.1 141.7
s4 0;8;1;9 25.9 20.9 26 12.1 84.9
c4 0;1;2;3 15.5 12.7 13.8 13.2 55.2
h4 0;16;1;17 23.8 17.5 16 24.3 81.5
s8 0;8;1;9;...;11 24.4 21.9 28.6 6.9 81.8
c8 0;1;2;3;...;7 14.4 13.4 14.3 9.1 51.2
h8 0;16;1;17;...;19 17.7 14.2 13.9 13.5 59.3
s16 16 scatter 25.1 21.4 35.5 5.3 87.4
c16 16 compact 17 15 15.5 9.7 57.2
h32 32 scatter 36 31.2 38.9 6.4 112.4

Table 1. Execution time in megacycles of SP
parallel regions across different thread affini-
ties with -O3 optimization. For n threads, we
consider three affinities: scatter sn, compact
cn, and hyperthread hn. Executing SP with
the c8 affinity provides an overall speedup of
1.71× over the standard (s16).

●

●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

● ●

rhs

ysolve
5

10
20
40
80

160
320

20

40

80

160

s2 c2 h2 s4 c4 h4 s8 c8 h8 s1
6

c1
6

h3
2

m
eg

ac
yc

le
s

● O3 best worst s16.O3

Fig. 1. Tuning exploration for two SP re-
gions. For each affinity, we plot the best,
worst, and -O3 optimization sequences.
Custom optimization beats -O3 for s2,s4,
and s8 on ysolve.

We will demonstrate how CERE operates on SP, a Scalar Penta-diagonal
solver, from the C version of the NPB 3.0 OpenMP benchmarks [12]. CERE au-
totuning achieved a 1.82× performance speedup over the standard parameters
levels. Thanks to the CERE codelet approach, the exploration time was approxi-
mately five times cheaper compared to the whole-program iterative compilation.

CERE starts by profiling SP and automatically selecting representative OpenMP
regions to tune. Xsolve, ysolve, zsolve, and rhs are selected and cover 93% of
SP execution time. CERE extracts these regions as codelets and tunes them with
a holistic exploration across three dimensions: thread number, thread placement,
and LLVM compiler passes. Once satisfying parameters are found, CERE pro-
duces an hybrid application where each region uses the best found parameters.

In this study, we explored the interactions between 12 thread configurations
combining different number of threads and affinity mappings and 150 LLVM
optimization sequences generated using the random sub-sampling presented in
section 4. Combining them produces an exploration space of 1800 points, which
gives an insight of how costly it is to simultaneously tune multiple parameters.

Figure 1 shows the performance of two SP parallel regions across this explo-
ration space. We notice that there is a strong interaction between the compiler
and the thread parameters as they both significantly impact the performances.
Moreover, the best parameters are different for the two regions: scatter place-
ment is best for rhs while compact benefits ysolve.

4

rhs zsolve xsolve+ysolve total

8.6

9.0

9.4

13

14

15

16

27.5

30.0

32.5

50

55

60

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

compiler optimizations

gi
ga

cy
cl

es
 −

 c
om

pa
ct

 8

Fig. 2. Violin plot execution time of SP regions using best NUMA affinity. Measures
were performed 31 times to ensure reproducibility. When measuring total execution
time, Hybrid outperforms all other optimization levels, since each region uses the best
optimization sequence available.

CERE makes it possible, through codelet replay, to independently explore
each region. Moreover, thanks to CERE replay prediction model presented in
section 3.2, it is possible to quickly evaluate the impact of each configuration
on only a few datasets. CERE evaluates thread affinities and compiler optimiza-
tions on SP, respectively 5.84× and 4.52× times faster than a full application
evaluation while keeping a low average error of 2.33%.

Custom parameters outperform the standard 16 threads scatter s16 -O3

on SP. Table 1 shows the performance of different thread affinities compiled
with -O3. The best custom thread affinity 0;1;2;3;4;5;6;7 (single NUMA
socket) achieves a speedup of 1.71× over the standard 16 threads scatter

(two NUMA sockets).
We explored with CERE 350 compiler optimization sequences on the best

single NUMA configuration found above. Xsolve and ysolve work best at the
default -O2 level, but a custom best sequence is found for zsolve and rhs.
Figure 2 shows the performance of each region compiled with the default opti-
mization and the best custom sequences. No single sequence is the best for all
regions. CERE hybrid compilation produces a binary where each region is com-
piled using its best sequence, achieving a speedup that cannot be reproduced
using traditional monolithic compilation.

3 CERE AutoTuner

CERE [11, 12] is an open source framework for code isolation. CERE finds and
extracts loops or OpenMP parallel regions from an application as isolated frag-
ments of code, called codelets. Codelets can be modified, compiled, run, and
measured independently from the original application.

Figure 3 presents how a region is captured as a codelet and replayed. Using
codelets as a proxy for application characterization requires two steps: capture
and replay. During the capture, the execution state is saved for each region.

5

Applications
Region

outlining

Region
Capture

Fast
performance

prediction

Retarget for:
 different architectures
 different optimizations

Change: number of threads, affinity,
runtime parameters

Warmup
+

Replay

Working set
and cache

capture

Generate
codelets
wrapper

Working sets
memory dump

Codelet
Replay

Invocation
&

Codelet
subsetting

Fig. 3. Codelet capture and replay workflow

During the replay, CERE restores the codelet memory and cache state before
executing the region. At replay, a cache and NUMA page ownership warmup is
necessary to ensure that the replay execution context is close to the original.

CERE extracts regions at the compiler Intermediate Representation (IR)
level after clang front-end translation but before LLVM middle-end optimiza-
tions. This allows us to re-target the codelet compilation and execution.

3.1 NUMA Aware Warmup

A replay has to faithfully reproduce the original invocation context. CERE al-
ready handles two issues: it restores the memory working set of the region and
warms up the cache to avoid cold-start bias [13].

It uses a snapshot of the memory at page level granularity. With a mem-
ory protection mechanism, the memory pages containing the working set are
captured. During replay, pages are remaped to their original addresses. CERE
includes different cache warmup approaches [11] that operate by replaying the
memory access history at a page granularity before running the codelet.

We outline a new aspect: the placement of the pages across the NUMA nodes.
Due to the node local first touch policy, a page is mapped to the core which first
attempts to use it. We must ensure that pages are mapped to the same NUMA
nodes as they have been in the original run. The problem is that pages are not
necessarily bound to the same NUMA nodes across the different thread affinities.
Scatter maximizes the number of NUMA nodes while compact minimizes it.

Figure 4 outlines this problem on a 2-NUMA nodes architecture. CERE de-
fault warmup uses a single thread to remap the pages to their original addresses:
all the pages are bound to a single NUMA node. Replays accurately predict the
execution time as long as the affinity binds the threads to the same NUMA node.
Otherwise, the replay pays NUMA latencies that do not appear in the original
run and which cause prediction discrepancies.

To solve this issue, we enhance the page capture by saving, for each page,
the first thread that touches it. During replay, before replaying the codelet code,
each thread touches the pages that it has saved at the capture. Hence, pages
are mapped to the NUMA node of the thread which is the first to touch them.

6

1 NUMA domain (compact) 2 NUMA domains (scatter)

0e+00

1e+10

2e+10

3e+10

4e+10

2 4 8 16 2 4 8 16 32
thread number

C
yc

le
s

Original Single Thread Warmup NUMA Warmup

Fig. 4. Prediction accuracy of a single threaded warmup versus a NUMA aware warmup
on BT xsolve. Only a NUMA aware warmup is able to predict this region execution
time on a multi NUMA node configuration.

To ensure a correct NUMA mapping at replay when we change the number of
threads, we must both not exceed the number of threads at capture and spread
the pages across the replaying threads.

3.2 Piecewise Optimization with Codelets

Regions within an application may not be sensitive to the same optimizations: SP
rhs and zsolve regions in section 2 have different best compiler optimizations.
Unlike monolithic approaches, CERE enables tuning each codelet independently.

The piecewise search not only improves the benefits over a monolithic tuning,
but also accelerates the exploration by avoiding the execution of useless compiler
sequences (see in experiments Fig. 7) or regions. IS benefits from this as it
only times a sorting algorithm included in a region which represents 22% of the
application execution time. Through a codelet, CERE extracts the sorting region
and tunes it without executing the rest of the application.

Codelets also accelerate the evaluation of each region. Regions may have per-
formance variations across their different invocations. Using a clustering method,
CERE classes these invocations and selects a representative subset of invocations
to be replayed. We only execute the subset to predict the region execution time.

We assume that the tuning parameters have a similar impact on the invo-
cations within the same cluster. Figure 5 illustrates this assumption across two
parameters on MG resid. Resid has 42 invocations grouped in 3 performance
classes. The invocations remain in the same classes across the parameters. So,
by replaying 3 instead of 42 invocations, CERE predicts the region execution for
each parameter to explore.

3.3 Hybrid Compilation

The piecewise tuning finds the best compiler optimizations for each loop and
OpenMP region. Unfortunately, LLVM does not provide a mechanism to select
compiler optimizations at the function or loop granularity. To compile each re-
gion with a different set of optimizations we must extract each region in its own

7

original trace replay

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

O
0 + 4 threads

O
3 + 2 threads

0 10 20 30 40
invocation

m
eg

ac
yc

le
s

Fig. 5. MG resid invocations execution time on Sandy Bridge over -O3 and -O0 with
respectively 2 and 4 threads. Each representative invocation predicts its performance
class execution time.

compilation unit. We leverage the extract tool included in LLVM which allows
to extract an IR function to a separate IR file.

The first step is outlining each region of interest in its own IR function.
Before any middle-end optimization is applied, each region is moved to a separate
compilation unit using LLVM extract. A special pass changes the visibility of
symbols used by the extracted region from internal to global so that they are
not removed by the compiler. Then, the best compiler sequence found is applied
to each separate IR file and an object file is produced. Finally, all the objects
files are linked together producing an hybrid binary.

4 Experiments and Validation

This section validates both usage of codelets as proxies to tune parameters
and production of hybrid binaries. Codelets capture most of the application
hotspots [11]. Nevertheless, we must demonstrate that codelet tuning helps find-
ing optimal parameters and reducing the search cost. To accurately predict best
parameters, codelet replays must capture the original application reaction to the
different compiler and thread configurations.

We used two different Intel CPU micro-architectures: a Sandy Bridge E5
with 64 GB of RAM and an Ivy Bridge i7-3770 with 16 GB of RAM. We chose
Sandy Bridge to explore thread affinities because it has 2 NUMA sockets and
each socket has 8 physical (16 hyper-threaded) cores.

Thread configurations were selected to explore different degrees of paral-
lelism, NUMA and hyper-threading effects. Sandy Bridge has 16 physical cores,
so we did not explore configurations beyond 32 threads. We used the Intel kmp
affinity [14] notation to characterize the thread placement. Cores ranked be-
tween 0 and 7 reference the physical cores of the first NUMA node while cores

8

between 8 and 15 reference the physical cores of the second NUMA node. Simi-
larly, cores from 16 to 23 and from 24 to 31 reference the hyper-threaded cores
of respectively the first and the second NUMA node.

The compilation search was performed on LLVM 3.4 using a random pass
selection. We use LLVM opt and llc to change respectively middle-end and back-
end optimizations. Middle-end passes have different impact depending on their
order of execution, and can be executed multiple times. -O3 is a manually tuned
sequence composed of 65 ordered passes aiming to provide good performances.
In this paper, random compilation sequences were generated by down-sampling
the -O3 default sequence. Each pass was removed with a 0.7 probability, and
the process was repeated four times to explore the impact of pass repetitions.
We empirically found that this generation method produces good and diverse
candidates. Back-end passes were selected among -O0,-O1,-O2 and -O3.

We performed the experiments on the NAS 3.0 sequential [15] and C OpenMP
parallel [16] benchmarks (respectively NAS SER and NPB) with CLASS A
datasets and on a Reverse Time Migration [17] (RTM) proto-application.

4.1 Thread Number and Affinity Tuning

This section presents the thread affinity tuning results. CERE page memory
capture was performed on a 16 threads scatter run. Table 2 evaluates CERE
thread affinities replay accuracy and reduction factor over NAS OpenMP. We
focused on regions representing more than 5% of the application execution time.
On average, a region exploration is 6.55× faster with codelets than with whole-
program evaluations. Tuning all the SP regions from the motivating example
with codelets is five times faster as SP has four regions with an average accel-
eration of twenty per region. CERE uses an optimistic warmup: it replays four
times the codelet over itself. These replays are not amortized on EP and MG: the
first executes the main parallel region once in the original execution while the
second requires many invocation replays to support the multiple performance
classes. As we increase the data sets, the warmup cost overhead becomes smaller
compared to the replay execution time. We tested xsolve BT with CLASS B
data sets and a single warmup invocation to achieve an acceleration of 9.48×,
twice the one achieved in class A, with an accuracy of 98.36%.

The average CERE prediction accuracy is 93.66%. It allows the autotuner to
outperform the standard scatter s16 over EP, FT, LU, and SP and to perform an
average speedup of 1.40× (see Fig. 6). We note that there is no thread affinity
to privilege over the others: h32, s16, and c8 are all optimal on at least two
applications.

4.2 Compiler Passes Tuning and Hybridization

Table 2 also presents CERE predictions through compiler optimizations with
3000 compiler sequences for BT, 500 for MG and 1000 for the others NAS SER. The
average CERE prediction accuracy and acceleration for a region is 95.8% and
20.61×. Figure 7 presents the number of explored compiler sequences required

9

Compiler passes Thread affinity
Benchmarks #Regions Accuracy Reduction factor #Regions Accuracy Reduction factor

BT 3 98.73 79.63 4 95.24 5.28
CG 2 98.65 3.39 2 79.48 1.23
FT 5 98.3 2.6 5 90.71 2.17
IS 3 96.64 1.26 2 94.85 1.04
SP 6 98.78 68.9 4 97.66 20.07
LU 7 95.04 8.49 2 99.00 12.64
EP 1 83.08 0.36 1 99.31 0.25
MG 4 97.22 0.28 4 93.04 0.45

Average 95.8 20.61 93.66 5.39

Table 2. The accuracy of the codelet prediction is the relative difference between
the original and the replay execution time. The benchmark reduction factor or ac-
celeration is the exploration time saved when studying a codelet instead of the whole
application. CERE fails to accelerate EP and MG evaluation: EP has a single region
with one invocation while MG displays many performance variations.

hyperthread.h32 compact.c8

0.0

0.5

1.0

1.5

BT CG EP FT IS LU MG SP BT CG EP FT IS LU MG SP

Sp
ee

d−
up

 o
ve

r s
ta

nd
ar

d
(s

16
)

original

replay

Fig. 6. Original and CERE predicted speedup for two thread configurations. Replay
speedup is the ratio between the replayed target and the replayed standard configura-
tion. CERE accurately predicts the best thread affinities in six out of eight benchmarks.
For CG and MG, we miss-predict configurations that use all the physical cores.

to achieve a speedup over 1.04× per region. We empirically determined this
speedup value. Unlike monolithic approaches which must continue exploration
until all regions are optimized, codelets can stop the search over a region once
a satisfying speedup is found and focus the exploration on other regions. Here,
CERE evaluates BT ysolve 461 times instead of 3000 times. Each evaluation
is on average 99 times cheaper than a full application run due to the codelet
invocations clustering.

The focus of this paper is not on the compiler flag selection, that is why a
naive random compiler pass search was used. Nevertheless, CERE results could
be improved with more sophisticated techniques for passes selection such as
genetic algorithms [6] which would also benefit from the piecewise approach.

CERE outperforms the standard -O3 over BT, SP, and IS with an average
speedup of 1.06× (see Fig. 8). IS random generator and sorting algorithm do
not benefit from the same optimizations which explains the significant difference
between the hybrid and the monolithic approach. Hybrid binaries based on orig-
inal or replay explorations have the same performances which ensure that we do
not miss any optimizations through the codelets.

10

BT IS SP

xsolve

ysolve

zsolve

createseq

fullverify

rank

rhs@166

rhs@273

rhs@64

xsolve

ysolve

zsolve

0 1000 2000 3000 0 5 10 0 250 500 750 1000
Compiler optimization sequences

cost of piecewise exploration overhead of monolithic exploration

Fig. 7. Compiler sequences required to get a speedup over 1.04× per region. CERE
evaluates the sequences in the same order for all the regions. Exploring regions sepa-
rately is cheaper because we stop tuning a region as soon as the speedup is reached.

0.90

0.95

1.00

1.05

1.10

BT IS SP
Benchmarks

S
pe

ed
up

 o
ve

r
−

O
3

hybrid (original exploration)

hybrid (replay exploration)

monolithic

best standard

Fig. 8. Speedups over -O3. We only observe speedups from the iterative search over BT,
SP, and IS. Best standard is the more efficient default optimization (either -O1, -O2,
or -O3). Monolithic is best whole program sequence optimization. Hybrids are build
upon optimizations found either with codelets or with original application runs.

We make the simplifying assumption that optimizing a region does not affect
other regions. This is not always true: due to memory effects, it is possible to have
performance interactions between neighbors. We find a compilation sequence
which gives a speedup of x1.08× over LU jacu. Unfortunately, optimizing jacu

has the side effect of slowing down by 0.92× the neighboring region jacld.
To stress the CERE prediction accuracy model, we performed a simultaneous

search of 1000 compiler sequences across the thread affinities on LU ssor. CERE
predicted region execution time with a mean accuracy of 99% across parameters.

Finally, we used CERE to tune the RTM proto-application used in a imaging
system for geophysical depth, and provided by Asma Farjallah and Total [9].
RTM is dominated by one Jacobi stencil computation called 3000000 times and
which represents 91.1% of the total execution time. CERE extracts this loop and
performs a compiler search of 300 passes. This codelet is 200× faster to evaluate
and finds a compiler optimization 1.11× faster than -03.

5 Related Work

While most of the research try to accelerate the iterative compilation by pruning
the exploration space [5–8, 10], this paper proposes a transverse approach which

11

do not focus on the search space but rather accelerates the evaluation of each
exploration point through a benchmark reduction technique.

Usual benchmark reduction techniques take advantage of phases to reduce
the simulation cost [18]. They cannot be directly used for compiler tuning as
they operate on the assembly. Fursin and al. [19] managed to take advantage of
the application phases: they evaluate multiple optimizations for a region with a
single run by versioning the different iterations of the region. However, they do
not use any code isolation techniques so they cannot focus the search which is
problematic when a region of interest has a few invocations compared to the oth-
ers. Oliveira et al. [20] cluster together codelets that have the same performance
behavior, and keep only one representative copy for each group. This benchmark
reduction is complementary to the invocations clustering presented in this paper
and should accelerate the overall search. We must find clustering metrics that
are relevant for compiler optimizations and thread affinities.

Like us, Kulkarni and al. [21] propose a piecewise search at the function level
granularity. They propose a per-function compilation using the VPO compiler
framework. Yet, they do not use any extraction mechanism during the search:
exploring two functions within the same file requires to execute the program
many times. Purini and al. [22] find, through LLVM iterative compilation runs,
good general sets of compilation sequences that should work well on any given
program. They can quickly tune new applications by directly searching passes
within the good set instead of exploring the whole optimization space. Codelets
could serve proxies to quickly find and test these optimal sequences.

6 Conclusion

In this paper we present an autotuner based on CERE codelets. Codelets serve
as proxies for tuning applications holistically, considering the interactions of
thread placements, NUMA effects, and compiler passes. CERE proposes a novel
piecewise approach that accelerates searching the parameter space and enables
an hybrid compilation where each region uses the best set of local parameters.
It outperforms traditional monolithic tuning.

CERE codelets predict the impact of thread placement and compiler opti-
mization with a mean accuracy of 94.7% over the NAS 3.0 benchmarks. On the
RTM industrial proto-application, CERE achieved a 1.11× execution speedup
through compiler pass selection. The search was 200× faster thanks to codelet
tuning. Detailed accuracy and acceleration reports are available at https://

benchmark-subsetting.github.io/autotuning-results/.
Acknowledgments: The research leading to these results has received fund-

ing under the Mont-Blanc project from the European Union’s Horizon 2020 re-
search and innovation program under grant agreement No 671697.

References

1. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: International symposium on Code Generation and Op-

12

timization, IEEE (2004) 75–86
2. Kisuki, T., Knijnenburg, P.M., O’Boyle, M.F., Bodin, F., Wijshoff, H.A.: A feasi-

bility study in iterative compilation. In: High Performance Computing, Springer
(1999) 121–132

3. Mazouz, A., Touati, S.A.A., Barthou, D.: Performance evaluation and analysis of
thread pinning strategies on multi-core platforms: Case study of spec omp appli-
cations on intel architectures. In: High Performance Computing and Simulation
(HPCS), IEEE (2011) 273–279

4. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W.,
Bletsch, T.: Adagio: making dvs practical for complex hpc applications. In: Pro-
ceedings of the conference on Supercomputing, ACM/IEEE (2009) 460–469

5. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: Code Generation and Optimization, 2003. CGO
2003. International Symposium on, IEEE (2003) 204–215

6. Ladd, S.R.: Acovea: Analysis of compiler options via evolutionary algorithm (2007)
7. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space

using genetic algorithms. In: SIGPLAN Notices. Volume 34., ACM (1999) 1–9
8. Hoste, K., Eeckhout, L.: Cole: compiler optimization level exploration. In: Code

generation and optimization, ACM (2008) 165–174
9. de Oliveira Castro, P., Petit, E., Farjallah, A., Jalby, W.: Adaptive sampling for

performance characterization of application kernels. Concurrency and Computa-
tion: Practice and Experience (2013)

10. Fursin, G., et al.: Milepost gcc: Machine learning enabled self-tuning compiler.
International Journal of Parallel Programming 39(3) (2011) 296–327

11. de Oliveira Castro, P., Akel, C., Petit, E., Popov, M., Jalby, W.: CERE: LLVM
Based Codelet Extractor and REplayer for Piecewise Benchmarking and Optimiza-
tion. Transactions on Architecture and Code Optimization 12(1) (2015) 6

12. Popov, M., Akel, C., Conti, F., Jalby, W., de Oliveira Castro, P.: Pcere: Fine-
grained parallel benchmark decomposition for scalability prediction. In: Interna-
tional Parallel and Distributed Processing Symposium, IEEE (2015) 1151–1160

13. Kessler, R.E., Hill, M.D., Wood, D.A.: A comparison of trace-sampling techniques
for multi-megabyte caches. Transactions on Computers 43(6) (1994) 664–675

14. Intel: Reference Guide for the Intel(R) C++ Compiler 15.0. https://software.

intel.com/en-us/node/522691

15. Bailey, D., et al.: The NAS parallel benchmarks summary and preliminary results.
In: Proceedings of the conference on Supercomputing, ACM/IEEE (1991) 158–165

16. Popov, M.: NAS 3.0 C OpenMP. http://benchmark-subsetting.github.io/cNPB
17. Baysal, E.: Reverse time migration. Geophysics 48(11) (November 1983) 1514
18. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find

periodic behavior and simulation points in applications. In: Parallel Architectures
and Compilation Techniques, IEEE (2001) 3–14

19. Fursin, G., Cohen, A., O’Boyle, M., Temam, O.: Quick and practical run-time
evaluation of multiple program optimizations. T. HiPEAC 1 (2007) 34–53

20. de Oliveira Castro, P., Kashnikov, Y., Akel, C., Popov, M., Jalby, W.: Fine-grained
Benchmark Subsetting for System Selection. In: International symposium on Code
Generation and Optimization, ACM (2014) 132–142

21. Kulkarni, P.A., Jantz, M.R., Whalley, D.B.: Improving both the performance
benefits and speed of optimization phase sequence searches, ACM (2010) 95–104

22. Purini, S., Jain, L.: Finding good optimization sequences covering program space.
Transactions on Architecture and Code Optimization 9(4) (2013) 56

